Table 2 (Contd.)
5 Recent examples of nitration reactions, see: (a) L. Grossi, P. C.
Montevecchi and S. Strazzari, Eur. J. Org. Chem., 2001, 741; (b) Y.
Nishiwaki, S. Sakaguchi and Y. Ishii, J. Org. Chem., 2002, 67, 5663;
(c) L. Grossi and P. C. Montevecchi, Chem.–Eur. J., 2002, 8, 380; (d) K.
Jayakanthan, K. P. Madhusudanan and Y. D. Vankar, Tetrahedron,
2004, 60, 397; (e) B. P. Fors and S. L. Buchwald, J. Am. Chem. Soc.,
2009, 131, 12898. See also ref. 7.
6 (a) T. Taniguchi and H. Ishibashi, Org. Lett., 2010, 12, 124;
(b) T. Taniguchi, T. Fujii and H. Ishibashi, J. Org. Chem., 2010,
DOI: 10.1021/jo101769d.
Entry
Substrate
Time/h
Producta,b
7 Examples of synthesis of nitroalkenes, see: (a) F. G. Bordwell and E.
W. Garbisch, Jr., J. Org. Chem., 1962, 27, 2322; (b) E. J. Corey and H.
Estreicher, J. Am. Chem. Soc., 1978, 100, 6294; (c) W. W. Sy and A. W.
By, Tetrahedron Lett., 1985, 26, 1193; (d) E. Hata, T. Yanada and T.
Mukaiyama, Bull. Chem. Soc. Jpn., 1995, 68, 3629; (e) P. J. Campos,
B. Garc´ıa and M. A. Rodr´ıguez, Tetrahedron Lett., 2000, 41, 979; (f) I.
Jovel, S. Prateeptongkum, R. Jackstell, N. Vogl, C. Weckbecker and M.
Beller, Adv. Synth. Catal., 2008, 350, 2493.
8 Reviews, see: (a) M. D. Dowle and D. I. Davies, Chem. Soc. Rev., 1979,
8, 171; (b) G. Cardillo and M. Orena, Tetrahedron, 1990, 46, 3321; (c) J.
Mulzer, In Organic Synthesis Highlights, J. Mulzer, H. J. Altenbach,
M. Braun, K. Krohn and H. U. Reissig, ed., VCH, Weinheim, 1991, pp
158-164; (d) G. Rousseau and S. Robin, Tetrahedron, 1998, 54, 13681;
(e) S. Robin and G Rousseau, Eur. J. Org. Chem., 2002, 3099; (f) K.
H. Jensen and M. S. Sigman, Org. Biomol. Chem., 2008, 6, 4083; (g) S.
Minakata, Acc. Chem. Res., 2009, 42, 1172.
9 Recent examples, see: (a) M. C. Marcotullio, V. Campagna, S.
Sternativo, F. Costantino and M. Curini, Synthesis, 2006, 2760; (b) S.
Minakata, Y. Morino, Y. Oderaotoshi and M Kamatsu, Org. Lett.,
2006, 8, 3335; (c) T. J. Donohoe, P. C. M. Winship and D. S. Walter,
J. Org. Chem., 2009, 74, 6394; (d) T. Wu, G. Yin and G. Liu, J. Am.
Chem. Soc., 2009, 131, 16354; (e) P. A. Sibbald and F. E. Michael, Org.
Lett., 2009, 11, 1147; (f) A. K. Verma, T. Aggarwal, V. Rustagi and R.
C. Larock, Chem. Commun., 2010, 46, 4064; (g) S. Mehta and R. C.
Larock, J. Org. Chem., 2010, 75, 1652.
15c
16c
17c
18c
1o: R = Ts
3
1.5
3
2o: no detected
2p: 69%
1p: R = Ac
1q: R = TFA
1r: R = Cbz
2q: 56%
1
2r: 42%
a Isolated yields. b Diastereomeric ratio was determined by 1H NMR
analysis. c FeCl3 was used instead of LiCl because the reaction did not
complete.
toward the application of this method to the synthesis of bioactive
compounds are currently underway in our laboratory.
This research was supported by a Grant-in-Aid for Scientific
Research from the Ministry of Education, Culture, Sports, Science
and Technology of Japan.
Notes and references
‡ Typical procedure: To a solution of 1a (95.7 mg, 0.40 mmol) and LiCl
(31.8 mg, 0.76 mmol) in MeCN (2 mL) was added Fe(NO3)3·9H2O (242
mg, 0.60 mmol), and the mixture was heated at reflux for 5 h. To the
reaction mixture was added NaHCO3 (336 mg, 4.00 mmol) and MeOH (1
mL) and the mixture was heated at reflux for 1 h. After cooling to room
temperature, the resultant suspension was diluted with Et2O and filtered.
Solvent of filtrate was removed under reduced pressure and the residue
was purified by silica gel chromatography (hexane–EtOAc, 5 : 1) to give 2a
(80.0 mg, 70%) as a colourless oil.
10 Electrophilic nitration of alkenes using NO2Cl has been reported, see:
H. Shechter, F. Conrad, A. L. Daulton and R. B. Kaplan, J. Am. Chem.
Soc., 1952, 74, 3052.
11 It has been reported that 5-exo-trig intramolecular Michael addi-
tion of a 2-substituted toluenesulfonamide derivative gave a cis-
pyrrolidine compound in good diastereomeric selectivity, see: R.
E. Dolle, C.-S. Li and A. N. Shaw, Tetrahedron Lett., 1989, 30,
4723.
12 A relative configuration of compound 2f was presumed by comparison
with reported spectroscopic data of known similar compounds, cis-
or trans-1-(4-methylphenylsulfonyl)-2-hydroxymethylphenyl-5-phenyl-
pyrrolidine (4). 1H NMR signals of 5-H of these compounds are 4.71
(1H, app. t, J = 6.6 Hz, for 2f), 4.79 (1H, dd, app. t, J = 7.0 Hz, for cis-4)
and 5.06 (1H, d, J = 8.5 Hz, for trans-4), see: P. Evans, T. McCabe, B.
S. Morgan and S. Reau, Org. Lett., 2005, 7, 43.
13 Synthesis of a b-lactam derivative by intramolecular Michael addition
of unsaturated amides has been reported, see: Y.-H. W. J. R. Corrigan
and R. F. Feldkamp, J. Org. Chem., 1961, 26, 1531.
1 H. Feuer and T. Nielsen, Nitro compounds: Recent Advances in Synthesis
and Chemistry, VCH, New York, 1990.
2 N. Ono, The Nitro Group in Organic Synthesis, John Wiley-VCH, New
York, 2001.
3 (a) A. G. M. Barrett and G. G Graboski, Chem. Rev., 1986, 86,
751; (b) R. Ballini, E. Marcantoni and M. Petrini, In Amino Group
Chemistry, A. Ricci, Ed., Wiley-VCH, 2008, pp 93-148; (c) R. Ballini
and M. Petrini, ARKIVOC, 2009, 195.
4 For reviews on nitration reactions, see: (a) G. A. Olah, R. Malhotra
and S. C. Narang, Nitration: Methods and Mechanisms, VCH Publishers
Inc., New York, 1989; (b) T. Mori and H. Suzuki, Synlett, 1995, 383;
(c) T. Suzuki and R. Noyori, Chemtracts, 1997, 10, 813; (d) A. V.
Stepanov and V. V. Veselovsky, Russ. Chem. Rev., 2003, 72, 327.
14 For a recent study of selectivity in O-cyclizations or N-cyclizations of
unsaturated amides using electrophiles, see: T. Hu, K. Liu, M. Shen, X.
Yuan, Y. Tang and C. Li, J. Org. Chem., 2007, 72, 8555 and references
therein.
This journal is
The Royal Society of Chemistry 2011
Org. Biomol. Chem., 2011, 9, 653–655 | 655
©