Journal of the American Chemical Society
ARTICLE
effect can overcome and direct syntheses based on supramole-
cular interactions between aromatic moieties. This observation
will allow chemists to design and indeed synthesize complex
structures that were previously inaccessible.
N.; Zhao, X.-L.; Huang, F. Org. Lett. 2009, 3350. (h) Liu, M.; Li, S.;
Zhang, M.; Zhou, Q.; Wang, F.; Hu, M.; Fronczek, F. R.; Li, N.; Huang,
F. Org. Biomol. Chem. 2009, 7, 1288. (i) Blanco, V.; Abella, D.; Pía, E.;
Platas-Iglesias, C.; Peinador, C.; Quintela, J. M. Inorg. Chem. 2009, 48,
4098. (j) Koshkakaryan, G.; Parimal, K.; He, J.; Zhang, X.; Abliz, Z.;
Flood, A. H.; Liu, Y. Chem.—Eur. J. 2008, 14, 10211. (k) Liu, Y.;
Bruneau, A.; He, J.; Abliz, Z. Org. Lett. 2008, 10, 765. (l) Raehm, L.;
Hamilton, D. G.; Sanders, J. K. M. Synlett 2002, 11, 1743. (m) Hansen,
J. G.; Feeder, N.; Hamilton, D. G.; Gunter, M. J.; Becher, J.; Sanders,
J. K. M. Org. Lett. 2000, 2, 449. (n) Zheng, Q.; Hamilton, D. G.; Feeder,
N.; Teat, S. J.; Goodman, J. M.; Sanders, J. K. M. New J. Chem. 1999, 23,
897. (o) Hamilton, D. G.; Prodi, L.; Feeder, N.; Sanders, J. K. M. J. Chem.
Soc., Perkin Trans. 1 1999, 1057.
’ ASSOCIATED CONTENT
S
Supporting Information. Detailed procedure for build-
b
ing block synthesis, library preparations, HPLC/LC-MS meth-
ods and data, and UV-vis and NMR spectra of isolated
catenanes and macrocycles. This material is available free of
(5) Cubberley, M. S.; Iverson, B. L. J. Am. Chem. Soc. 2001, 123,
7560.
(6) Wang, W.; Wang, L.; Palmer, B. J.; Exarhos, G. J.; Li, A. D. Q. J.
’ AUTHOR INFORMATION
Corresponding Author
g.d.pantos@bath.ac.uk; jkms@cam.ac.uk
Am. Chem. Soc. 2006, 128, 11150.
(7) Murase, T.; Otsuka, K.; Fujita, M. J. Am. Chem. Soc. 2010, 132,
7864.
(8) (a) Au-Yeung, H. Y.; Panto-s, G. D.; Sanders, J. K. M. J. Org.
Chem. DOI: 10.1021/jo201001981p. (b) Au-Yeung, H. Y.; Panto-s,
G. D.; Sanders, J. K. M. Angew. Chem., Int. Ed. 2010, 49, 5331. (c) Au-
Yeung, H. Y.; Panto-s, G. D.; Sanders, J. K. M. J. Am. Chem. Soc. 2009,
131, 16030. (d) Au-Yeung, H. Y.; Panto-s, G. D.; Sanders, J. K. M. Proc.
Natl. Acad. Sci. U.S.A. 2009, 106, 10466.
’ ACKNOWLEDGMENT
We thank EPSRC, the Croucher Foundation, and Pembroke
College (Cambridge) for financial support and Dr Ana Belenguer
for maintaining the HPLC facility.
(9) (a) Herrmann, A. Org. Biomol. Chem. 2009, 7, 3195. (b) Ladame,
S. Org. Biomol. Chem. 2008, 6, 219. (c) Lehn, J.-M. Chem. Soc. Rev. 2007,
36, 151. (d) Rozenman, M. M.; McNaughton, B. R.; Liu, D. R. Curr.
Opin. Chem. Biol. 2007, 11, 259. (e) Corbett, P. T.; Leclaire, J.; Vial, L.;
West, K. R.; Wietor, J.-L.; Sanders, J. K. M.; Otto, S. Chem. Rev. 2006,
106, 3652. (f) de Bruin, B.; Hauwert, P.; Reek, J. N. H. Angew. Chem., Int.
Ed. 2006, 45, 2660.
(10) Other examples of catenane discovery from DCLs: (a) Chung,
M.-K.; White, P. S.; Lee, S. J.; Gagnꢀe, M. R. Angew. Chem., Int. Ed. 2009,
48, 8683. (b) West, K. R.; Ludlow, R. F.; Corbett, P. T.; Besenius, P.;
Mansfeld, F. M.; Cormack, P. A.G.; Sherrington, D. G.; Goodman, J. M.;
Stuart, M. C. A.; Otto, S. J. Am. Chem. Soc. 2008, 130, 12218. (c) Lam,
R. T. S.; Belenguer, A.; Roberts, S. L.; Naumann, C.; Jarrosson, T.; Otto,
S.; Sanders, J. K. M. Science 2005, 308, 667.
(11) Disulfide exchange was shown to stop after 1 day of oxidation:
the catenanes are progressively formed in the libraries until the libraries
reach a steady state, corresponding to the full oxidation of the library
members. The quantity of catenane formed can be further increased by
adding 20% dithiothreitol to reinitiate the exchange process, showing
that thermodynamic equilibrium has not been reached yet (see the
Supporting Information).
(12) (a) Fujita, M.; Ibukuro, F.; Hagihara, H.; Ogura, K. Nature
1994, 367, 720. (b) Fujita, M.; Ibukuro, F.; Ogura, K. J. Am. Chem. Soc.
1995, 117, 4175.
’ REFERENCES
(1) (a) Hunter, C. A.; Lawson, K. R.; Perkins, J.; Urch, C. J. J. Chem.
Soc., Perkin Trans. 2 2001, 651. (b) Hunter, C. A. Chem. Soc. Rev. 1994,
23, 101. (c) Hunter, C. A.; Sanders, J. K. M. J. Am. Chem. Soc. 1990, 112,
5525.
(2) (a) Ramkumar, S. G.; Ramakrishnan, S. Macromolecules 2010,
43, 2307. (b) Zhang, W.; Dichtel, W. R.; Stieg, A. Z.; Benítez, D.;
Gimzewski, J. K.; Heath, J. R.; Stoddart, J. F. Proc. Natl. Acad. Sci. U.S.A.
2008, 105, 6514. (c) Bradford, V. J.; Iverson, B. L. J. Am. Chem. Soc.
2008, 130, 1517. (d) Zhou, Q.-Z.; Jia, M.-X.; Shao, X.-B.; Wu, L.-Z.;
Jiang, X.-K.; Li, Z.-T.; Chen, G.-J. Tetrahedron 2005, 61, 7117. (e) Zhao,
X.; Jia, M.-X.; Jiang, X.-K.; Wu, L.-Z.; Li, Z.-T.; Chen, G.-J. J. Org. Chem.
2004, 69, 270. (f) Ghosh, S.; Ramakrishnan, S. Angew. Chem., Int. Ed.
2004, 43, 3264. (g) Zhou, Q.-Z.; Jiang, X.-K.; Shao, X.-B.; Chen, G.-J.;
Jia, M.-X.; Li, Z.-T. Org. Lett. 2003, 5, 1955. (h) Gabriel, G. J.; Iverson,
B. L. J. Am. Chem. Soc. 2002, 124, 15174. (i) Ngyuen, J. Q.; Iverson, B. L.
J. Am. Chem. Soc. 1999, 121, 2639. (j) Lokey, R. S.; Iverson, B. L. Nature
1995, 375, 303.
(3) For some recent examples:(a) Mullen, K. M.; Davis, J. J.; Beer,
P. D. New J. Chem. 2009, 33, 769. (b) Lin, T.-C.; Lai, C.-C.; Chiu, S.-H.
Org. Lett. 2009, 11, 613. (c) Ikeda, T.; Higuchi, M.; Kurth, D. G. Chem.
—Eur. J. 2009, 15, 4906. (d) Yoon, I.; Benítez, D.; Zhao, Y.-L.; Miljaniꢀc,
ꢁ
O. S.; Kim, S,-Y.; Tkatchouk, E.; Leung, K. C.-F.; Khan, S. I.; Goddard,
W. A., III; Stoddart, J. F. Chem.—Eur. J. 2009, 15, 1115. (e) Ikeda, T.;
Higushi, M.; Kurth, D. G. J. Am. Chem. Soc. 2009, 131, 9158. (f)
Cagulada, A. M.; Hamilton, D. G. J. Am. Chem. Soc. 2009, 131, 902. (h)
Pascu, S. I.; Naumann, C.; Kaiser, G.; Bond, A. D.; Sanders, J. K. M.;
Jarrosson, T. Dalton Trans. 2007, 3874. (g) Pascu, S. I.; Jarrosson, T.;
Naumann, C.; Otto, S.; Kaiser, G.; Sanders, J. K. M. New J. Chem. 2005,
29, 80.
(4) For some recent examples:(a) Wang, C.; Olson, M. A.; Fang, L.;
Benítez, D.; Tkatchouk, E.; Basu, S.; Basuray, A. N.; Zhang, D.; Zhu, D.;
Goddard, W. A.; Stoddart, J. F. Proc. Natl. Acad. Sci. U.S.A. 2010, 107,
13991. (b) Stoddart, J. F. Chem. Soc. Rev. 2009, 38, 1802. (c) Zhao, Y.-L.;
Trabolsi, A.; Stoddart, J. F. Chem. Commun. 2009, 4844. (d) Spruell,
J. M.; Paxton, W. F.; Olsen, J.-C.; Benítez, D.; Tkatchouk, E.; Stern, C. L.;
Trabolsi, A.; Friedman, D. C.; Goddard, W. A., III; Stoddart, J. F. J. Am.
Chem. Soc. 2009, 131, 11571. (e) Ramos, S.; Alcalde, E.; Stoddart, J. F.;
White, A. J. P.; Williams, D. J.; Pꢀerez-García, L. New J. Chem. 2009, 33,
300. (f) Cao, D.; Amelia, M.; Klivansky, L. M.; Koshkakaryan, G.; Khan,
S. I.; Semeraro, M.; Silvi, S.; Venturi, M.; Credi, A.; Liu, Y. J. Am. Chem.
Soc. 2010, 132, 1110. (g) Li, S.; Liu, M.; Zheng, B.; Zhu, K.; Wang, F.; Li,
(13) (a) Au-Yeung, H. Y.; Cougnon, F. B. L.; Otto, S.; Panto-s, G. D.;
Sanders, J. K. M. Chem. Sci. 2010, 567. (b) Au-Yeung, H. Y.; Pengo, P.;
Panto-s, G. D.; Otto, S.; Sanders, J. K. M. Chem. Commun. 2009, 419.
(14) Equivalently, the complexation of linear oligomers and
single building blocks can lead to their cyclization to give the same
intermediates.
(15) Pengo, P.; Panto-s, G. D.; Otto, S.; Sanders, J. K. M. J. Org. Chem.
2006, 71, 7063.
3207
dx.doi.org/10.1021/ja111407m |J. Am. Chem. Soc. 2011, 133, 3198–3207