1030 Organometallics 2011, 30, 1030–1033
DOI: 10.1021/om101074j
Synthesis and Structure of [{PhC(NtBu)2}2Ge2(μ-S)2Cl2] and a
Germanium Dithiocarboxylate Analogue
Sakya S. Sen, Rajendra S. Ghadwal, Daniel Kratzert, Daniel Stern, Herbert W. Roesky,*
and Dietmar Stalke
€
Institut fu€r Anorganische Chemie der Universitat Gottingen, Tammannstrasse 4, 37077 Gottingen, Germany
€
€
Received November 15, 2010
LGeCl (L = PhC(NtBu)2) was treated with elemental sulfur in THF to afford [{PhC(NtBu)2}2-
Ge2(μ-S)2Cl2] (2) in 44% yield instead of yielding a compound containing a GedS double bond. It
was revealed by the X-ray single-crystal structure that there is no GedS unit in 2. Instead, 2 features a
four-membered ring containing two germanium and two sulfur atoms. The four-membered Ge2S2
ring is planar and is formed by a weak [2 þ 2] cycloaddition interaction. Within the ring skeleton the
two germanium atoms are arranged opposite to each other. Furthermore, 2 was reduced with 2 equiv
of potassium graphite in THF to yield a potassium salt of a germathiocarboxylate analogue of
composition [{PhC(NtBu)2}Ge(S)SK(THF)]2 (3). Compounds 2 and 3 were characterized by single-
crystal X-ray diffraction studies, NMR spectroscopy, EI-MS spectrometry, and elemental analysis.
Introduction
attention, due to the great variety of interesting chemical and
physical properties as well as applications.4 Several synthetic
approaches to this class of compounds have been developed.
Thiostannates have been synthesized through a solvother-
mal route using different amines as structure-directing
The chemistry of sulfur complexes shows a rich diversity.
Metal sulfur clusters are of considerable interest because
of their remarkable chemical and physical properties.1
Transition-metal clusters are among those which have
been intensely studied in recent years.2 In comparison to
that, main group sulfur clusters are less common in the
literature.3 Network compounds that consist of group 14
elements linked by sulfur atoms have received considerable
agents such as [SnS2 en] (en=ethylenediamine),5 (C6H20-
3
N4)2[SnS2] 2H2O,6 (C2H10N2)(C2H9N2)2[Sn2S6],7 R2Sn3S7
3
(R = tetramethylammonium (TMA),8 diazabicyclooctane
(DABCO),9 ammonium/tetraethylammonium (ATEA), tetra-
ethylammonium (TEA)10), R02Sn4S9 (R0 = tetrapropylammo-
nium (TPA), tetrabutylammonium (TBA)10), and (enH)4-
[Sn2S6].11 In this series of compounds thiogermanates were
neglected. Moreover, a well-known problem in solvothermal
syntheses is that many parameters such as temperature, time,
solvent, and concentration influence the product formation.
Although several efforts have been undertaken, chemists are
still far from achieving a deeper understanding of the reac-
tion mechanism occurring under solvothermal conditions.12
As a result, there has been a great quest for an alternative
*To whom correspondence should be addressed: E-mail: hroesky@
gwdg.de.
(1) (a) Bronger, W. Angew. Chem. 1981, 93, 12-23; Angew. Chem.,
Int. Ed. Engl. 1981, 20, 52-62. (b) Corbett, J. D. Inorg. Chem. 2000, 39,
5178–5191. (c) Dehnen, S.; Melullis, M. Coord. Chem. Rev. 2007, 251,
1259–1280.
(2) (a) Lippard, S. J.; Berg, J. M. Principles of Bioinorganic Chemistry
University Science Books: Mill Valley, CA; 1994. (b) Herskovitz, T.;
Averill, B. A.; Holm, R. H.; Ibers, J. A.; Phillips, W. D.; Weiher, J. F. Proc.
Natl. Acad. Sci. U.S.A. 1972, 69, 2437–2441. (c) Rao, P. V.; Holm, R. H.
Chem. Rev. 2004, 104, 527–559.
(3) (a) Matsumoto, T.; Nakaya, Y.; Tatsumi, K. Organometallics
2006, 25, 4835–4845. (b) Matsumoto, T.; Matsui, Y.; Ito, M.; Tatsumi,
K. Inorg. Chem. 2008, 47, 1901–1903. (c) Matsumoto, T.; Matsui, Y.;
Ito, M.; Tatsumi, K. Chem. Asian J. 2008, 3, 607–613. (d) Matsumoto,
T.; Matsui, Y.; Nakaya, Y.; Tatsumi, K. Chem. Lett. 2001, 60–61. (e)
Tokitoh, N.; Suzuki, H.; Matsumoto, T.; Matsuhashi, Y.; Okazaki, R.;
Goto, M. J. Am. Chem. Soc. 1991, 113, 7047–7049. (f) Matsumoto, T.;
Tokitoh, N.; Okazaki, R.; Goto, M. Organometallics 1995, 14, 1008–
1015. (g) Suzuki, H.; Tokitoh, N.; Okazaki, R.; Nagase, S.; Goto, M.
J. Am. Chem. Soc. 1998, 120, 11096–11105. (h) Matsuhashi, Y.; Tokitoh,
N.; Okazaki, R.; Goto, M.; Nagase, S. Organometallics 1993, 12, 1351–
1358. (i) Tokitoh, N.; Kano, N.; Shibata, K.; Okazaki, R. Organome-
tallics 1995, 14, 3121–3123. (j) Herzog, U.; Rheinwald, G. Organome-
tallics 2001, 20, 5369–5374. (k) Herzog, U.; Rheinwald, G.
J. Organomet. Chem. 2001, 628, 133–143. (l) Choi, N.; Asano, K.; Sato,
N.; Ando, W. J. Organomet. Chem. 1996, 516, 155–165. (m) Choi, N.;
Asano, K.; Watanabe, S.; Ando, W. Tetrahedron 1997, 53, 12215–12224.
(n)Ando, W.; Kadowaki, T.; Kabe, Y.;Ishii, M. Angew. Chem. 1992, 104,
84-86; Angew. Chem., Int. Ed. Engl. 1992, 31, 59-61. (o) Unno, M.;
Kawai, Y.; Shioyama, H.; Matsumoto, H. Organometallics 1997, 16,
4428–4434. (p) Saito, M.; Hashimoto, H.; Tajima, T.; Ikeda, M.
J. Organomet. Chem. 2007, 692, 2729–2735.
€
€
(4) (a) Hassanzadeh Fard, Z.; Muller, C.; Harmening, T.; Pottgen,
R.; Dehnen, S. Angew. Chem. 2009, 121, 4507-4511; Angew. Chem.,
Int. Ed. 2009, 48, 4441-4444. (b) Hassanzadeh Fard, Z.; Xiong, L.;
€
Muller, C; Holynska, M.; Dehnen, S. Chem. Eur. J. 2009, 15, 6595–6604.
(c) Halvagar, M. R.; Hassanzadeh Fard, Z.; Xiong, L.; Dehnen, S. Inorg.
Chem. 2009, 48, 7373–7377.
€
(5) Behrens, M.; Nather, C.; Bensch, W. Z. Anorg. Allg. Chem. 2002,
628, 2160.
€
(6) Nather, C.; Scherb, S.; Bensch, W. Acta Crystallogr., Sect. E 2003,
59, m280–m282.
€
(7) Puls, A.; Nather, C.; Bensch, W. Acta Crystallogr., Sect. E 2005,
61, m868–m870.
(8) Parise, J. B.; Ko, Y.; Rijssenbeek, J.; Nellis, D. M.; Tan, K.; Koch,
S. J. Chem. Soc., Chem. Commun. 1994, 527–528.
(9) Jiang, T.; Lough, A.; Ozin, G. A. Adv. Mater. 1998, 10, 42–46.
(10) Jiang, T.; Lough, A.; Ozin, G. A.; Bedard, R. L.; Broach, R.
J. Mater. Chem. 1998, 8, 721–732.
(11) Dehnen, S.; Zimmermann, C. Z. Anorg. Allg. Chem. 2002, 628,
2436–2439.
(12) Francis, R. J.; O’Hare, D. J. Chem. Soc., Dalton Trans. 1998,
3133–3148.
r
pubs.acs.org/Organometallics
Published on Web 02/18/2011
2011 American Chemical Society