990
T. Nemoto et al. / Tetrahedron Letters 52 (2011) 987–991
(A)
(B)
O
O
O
H
O
H
N
N
H
H
N
N
Ph
N
Ph
N
O
O
O
O
H
H
O
N
O
N
H
H
N
N
CH3
CH3
Nu
Nu
Nu
:
nucleophile
Disfavored
O
O
N
N
O
H
H
2
N
CH3
NO2
O
CH3
Ph
H
O
3
H
N
O
N
O
H
CH3
H
O
(C)
major isomer
8a (2S,3S)
Figure 3. Working model.
diastereoselectivity (dr = 15.4:1), affording 9a10a in 88% ee (61%
ee for the minor isomer).
Supplementary data
Although the complete transition state model for the construc-
tion of a quaternary carbon is not clear, the observed stereoselec-
tion in the asymmetric conjugate addition can be explained by
the working model shown in Figure 3. During the C–C bond forma-
tion, the hydrogen atom on the chiral carbon should locate inside
the hydrogen bond donor pocket to avoid steric repulsion between
the substrate and the pyrrolidine ring moiety. As a consequence,
the tert-amine moiety is placed beneath the amide plane in the
case of (S)-proline-derived catalyst to activate 1,3-dicarbonyl com-
pounds. The observed absolute configuration of the benzylic posi-
tion of 7a,13 as well as 8a, indicates that the C–C bond formation
occurs on the Re-face of b-aryl nitroalkenes. Between the two pos-
sible modes of catalyst–substrate interaction suitable for the Re-
face attack, interaction (A) would be more favored because of the
severe steric repulsion between the aryl moiety and the pyrroli-
dine ring moiety in interaction (B). Based on the absolute configu-
ration of the quaternary carbon of the major isomer 8a, working
model (C) is proposed as a plausible transition state.14 As shown
in Table 3, the observed enantioselectivity of the minor diastereo-
mer is similar to that of the corresponding major isomer. This fact
indicates that the diastereomeric ratio would be mainly dependent
on the enantiofacial selection of the prochiral enolate derived from
2-acetylcyclopentanone.15
Supplementary data associated with this article can be found, in
References and notes
1. For reviews, see: (a) Takemoto, Y. Org. Biomol. Chem. 2005, 3, 4299; (b) Taylor,
M. S.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2006, 45, 1520; (c) Doyle, A. G.;
Jacobsen, E. N. Chem. Rev. 2007, 107, 5713.
2. (a) Hamann, B. C.; Branda, N. R.; Rebek, J., Jr. Tetrahedron Lett. 1993, 43, 6837;
(b) Shimizu, K. D.; Dewey, T. M.; Rebek, J., Jr. J. Am. Chem. Soc. 1994, 116, 5145;
(c) Bühlmann, P.; Nishizawa, S.; Xiao, K. P.; Umezawa, Y. Tetrahedron 1997, 53,
1647; (d) Nishizawa, S.; Yokobori, T.; Kato, R.; Yoshimoto, K.; Kamaishi, T.;
Teramae, N. Analyst 2003, 128, 663; (e) Simón, L.; Muniz, F. M.; Sáez, S.; Raposo,
C.; Sanz, F.; Morán, J. R. Helv. Chim. Acta 2005, 88, 1682; (f) Simón, L.; Muniz, F.
M.; Sáez, S.; Raposo, C.; Morán, J. R. Eur. J. Org. Chem. 2007, 4821.
3. Report on non-chiral hydrogen bond donor catalysts based on 4,5-diamino-9,9-
dimethylxanthene skeleton, see: Muniz, F. M.; Montero, V. A.; Fuentes de
Arriba, Á. L.; Simón, L.; Raposo, C.; Morán, J. R. Tetrahedron Lett. 2008, 49, 5050.
4. For reviews on the multimetallic bifunctional asymmetric catalysis, see: (a)
Rowlands, G. J. Tetrahedron 2001, 57, 1865; (b) Shibasaki, M.; Matsunaga, S.;
Kumagai, N. Synlett 2008, 1583; (c) Shibasaki, M.; Kanai, M.; Matsunaga, S.;
Kumagai, N. Acc. Chem. Res. 2009, 42, 1117.
5. Nagamani, S. A.; Norikane, Y.; Tamaoki, N. J. Org. Chem. 2005, 70, 9304.
6. Compound 2 was obtained in 75% yield, accompanied by formation of the di-
Boc derivative (11%) and the recovery of 1 (10%). The di-Boc derivative was
easily transformed into 1 in quantitative yield under basic conditions. For a
reference of selective protection of 4,5-diamino-9,9-dimethylxanthenes, see:
Muniz, F. M.; Simón, L.; Sáez, S.; Raposo, C.; Morán, J. R. Tetrahedron Lett. 2007,
49, 790.
In conclusion, we developed novel bifunctional hydrogen bond
donor catalysts using a 4,5-diaminoxanthene scaffold and natural/
unnatural amino acids as chiral sources. The developed catalysts
were successfully applied to enantioselective conjugate addition
of 1,3-dicarbonyl compounds to nitroalkenes for constructing an
all-carbon quaternary stereocenter (up to 95% ee). Mechanistic
investigations into the present asymmetric catalysis, as well as
studies to apply the developed catalysts to other enantioselective
reactions, are in progress.
7. Partial racemization occurred when N,N-dimethyl (S)-phenylalanine was
directly utilized for the coupling reaction.
8. Precedent examples of asymmetric conjugate addition of acetylacetone and
malonate nucleophiles to nitroalkenes. Asymmetric organocatalysis: (a) Okino,
T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 12672; (b) Wang, J.; Li,
H.; Duan, W.; Zu, L.; Wang, W. Org. Lett. 2005, 7, 4713; (c) Terada, M.; Ube, H.;
Yaguchi, Y. J. Am. Chem. Soc. 2006, 128, 1454; (d) Wang, C.-J.; Zhang, Z.-H.;
Dong, X.-Q.; Wu, X.-J. Chem. Commun. 2008, 1431; (e) Peng, F.-Z.; Shao, Z.-H.;
Fan, B.-M.; Song, H.; Li, G.-P.; Zhang, H.-B. J. Org. Chem. 2008, 73, 5202; (f)
Andrés, J. M.; Manzano, R.; Pedrosa, R. Chem. Eur. J. 2008, 14, 5116; (g) Malerich,
J. P.; Hagihara, K.; Rawal, V. H. J. Am. Chem. Soc. 2008, 130, 14416; (h) Gao, P.;
Wang, C.; Wu, Y.; Zhou, Z.; Tang, C. Eur. J. Org. Chem. 2008, 4563; (i) Jiang, X.;
Zhang, Y.; Liu, X.; Zhang, G.; Lai, L.; Wu, L.; Zhang, J.; Wang, R. J. Org. Chem.
2009, 74, 5562; (j) Almasi, D.; Alonso, D. A.; Gómez-Bengoa, E.; Nájera, C. J. Org.
Chem. 2009, 74, 6163; (k) Pu, X.; Li, P.; Peng, F.; Li, X.; Zhang, H.; Shao, Z. Eur. J.
Org. Chem. 2008, 4563; Asymmetric metal-based catalysis: (l) Watanabe, M.;
Ikagawa, A.; Wang, H.; Murata, K.; Ikariya, T. J. Am. Chem. Soc. 2004, 126, 11148;
(m) Evans, D. A.; Mito, S.; Saidel, D. J. Am. Chem. Soc. 2007, 129, 11583; (n)
Tsubogo, T.; Yamashita, Y.; Kobayashi, S. Angew. Chem., Int. Ed. 2009, 48, 9117.
Acknowledgment
This work was supported in part by a Grant-in Aid for Encour-
agement of Young Scientists (B) from the Ministry of Education,
Culture, Sports, Science, and Technology, Japan.