Organometallics
COMMUNICATION
Scheme 3. Possible Reaction Mechanism
(2) For recent reviews, see: (a) Tokitoh, N.; Okazaki, R. Coord.
Chem. Rev. 2000, 210, 251. (b) Hill, N. J.; West, R. J. Organomet. Chem.
2004, 689, 4165. (c) Kira, M.; Iwamoto, T.; Ishida, S. Bull. Chem. Soc.
Jpn. 2007, 80, 258. (d) Takeda, N.; Tokitoh, N. Synlett 2007, 2483. (e)
Mizuhata, Y.; Sasamori, T.; Tokitoh, N. Chem. Rev. 2009, 109, 3479.
(3) For catalytic silylene transfer to alkynes, see: (a) Okinoshima,
H.; Yamamoto, K.; Kumada, M. J. Am. Chem. Soc. 1972, 94, 9263. (b)
Okinoshima, H.; Yamamoto, K.; Kumada, M. J. Organomet. Chem. 1975,
86, C27. (c) Sakurai, H.; Kamiyama, Y.; Nakadaira, Y. J. Am. Chem. Soc.
1977, 99, 3879. (d) Seyferth, D.; Duncan, D. P.; Vick, S. C. J. Organomet.
Chem. 1977, 125, C5. (e) Seyferth, D.; Vick, S. C.; Shannon, M. L.; Lim,
T. F. O.; Duncan, D. P. J. Organomet. Chem. 1977, 135, C37. (f)
Ishikawa, M.; Sugisawa, H.; Harata, O.; Kumada, M. J. Organomet. Chem.
1981, 217, 43. (g) Seyferth, D.; Vick, S. C.; Shannon, M. L. Organome-
tallics 1984, 3, 1897. (h) Ishikawa, M.; Matsuzawa, S.; Hirotsu, K.;
Kamitori, S.; Higuchi, T. Organometallics 1984, 3, 1930. (i) Sch€afer, A.;
Weidenbruch, M.; Pohl, S. J. Organomet. Chem. 1985, 282, 305. (j)
Seyferth, D.; Shannon, M. L.; Vick, S. C.; Lim, T. F. O. Organometallics
1985, 4, 57. (k) Ishikawa, M.; Matsuzawa, S.; Higuchi, T.; Kamitori, S.;
Hirotsu, K. Organometallics 1985, 4, 2040. (l) Tamao, K.; Yamaguchi, S.;
Shiozaki, M.; Nakagawa, Y.; Ito, Y. J. Am. Chem. Soc. 1992, 114, 5867.
(m) Ikenaga, K.; Hiramatsu, K.; Nasaka, N.; Matsumoto, S. J. Org. Chem.
1993, 58, 5045. (n) Belzner, J.; Ihmels, H. Tetrahedron Lett. 1993,
34, 6541. (o) Ojima, I.; Fracchiolla, D. A.; Donovan, R. J.; Banerji, P.
J. Org. Chem. 1994, 59, 7594. (p) Tanaka, Y.; Yamashita, H.; Tanaka, M.
Organometallics 1995, 14, 530. (q) Palmer, W. S.; Woerpel, K. A.
Organometallics 1997, 16, 1097. (r) Palmer, W. S.; Woerpel, K. A.
Organometallics 1997, 16, 4824. (s) Palmer, W. S.; Woerpel, K. A.
Organometallics 2001, 20, 3691. (t) Clark, T. B.; Woerpel, K. A. J. Am.
Chem. Soc. 2004, 126, 9522.
oxidative addition of the Si-B bond of 2 to Pd(0), followed by
elimination of aminoborane 4 (Scheme 3, i).14,15 Stereospecific
formation of dihydrosilole 5 then takes place through silylene-
1,3-diene [4þ1] cycloaddition between B and 1 (Scheme 3, ii).8b
Sequentially, the second B reacts with 5 to form π-allylpalladium
C via oxidative addition of the allylic C-H bond. The conversion
of (hydride)(silylene)palladium C to the (hydrosilyl)palladium
complex D takes place,16 and then 3 is formed by reductive
elimination from D. This mechanism is consistent with both the
stereochemical course of the reaction and the results of the
deuterium labeling experiments.
In conclusion, we have established a new catalytic silylene-based
transformation utilizing silylboronic ester as a silylene source. In this
transformation, 2-alkenylindoles react with silylene as a four-atom
component in the [4þ1] cycloaddition, giving five-membered
silacycles fused with the indole. Remarkable bissilylative cyclization
takes place with high diastereoselectivity in the reaction of 2-(1-
alkenyl)indoles. The synthetic utility of the bissilylated indoles and
the applicability of the reaction to other alkenyl heteroaromatic
compounds are now under investigation in our laboratory.
(4) For catalytic silylene transfer to 1,3-dienes, see: (a) Seyferth, D.;
Shannon, M. L.; Vick, S. C.; Lim, T. F. O. Organometallics 1985, 4, 57.
(b) Ohshita, J.; Ishikawa, M. J. Organomet. Chem. 1991, 407, 157.
ꢀ
(5) For catalytic silylene transfer to alkenes, see: (a) Cirakoviꢀc, J.;
Driver, T. G.; Woerpel, K. A. J. Am. Chem. Soc. 2002, 124, 9370. (b)
Driver, T. G.; Woerpel, K. A. J. Am. Chem. Soc. 2004, 126, 9993. (c)
ꢀ
Cirakoviꢀc, J.; Driver, T. G.; Woerpel, K. A. J. Org. Chem. 2004, 69, 4007.
(6) For catalytic silylene transfer to R,β-unsaturated carbonyl
compounds, see: (a) Calad, S. A.; Woerpel, K. A. J. Am. Chem. Soc.
2005, 127, 2046. (b) Nevꢀarez, Z.; Woerpel, K. A. Org. Lett. 2007, 9, 3773.
(c) Okamoto, K.; Hayashi, T. Org. Lett. 2007, 9, 5067. (d) Okamoto, K.;
Hayashi, T. Chem. Lett. 2008, 37, 108.
(7) For catalytic silylene transfer to allylic ethers, see: Bourque, L. E.;
Cleary, P. A.; Woerpel, K. A. J. Am. Chem. Soc. 2007, 129, 12602.
(8) (a) Ohmura, T.; Masuda, K.; Suginome, M. J. Am. Chem. Soc.
2008, 130, 1526. (b) Ohmura, T.; Masuda, K.; Takase, I.; Suginome, M.
J. Am. Chem. Soc. 2009, 131, 16624. For our recent account, see:(c)
Ohmura, T.; Suginome, M. Bull. Chem. Soc. Jpn. 2009, 82, 29.
(9) Examples on dearomatizing conversion of benzene derivatives
with silylene in the absence of transition metal catalysts: (a) Belzner, J.;
Ihmels, H.; Kneisel, B. O.; Gould, R. O.; Herbst-Irmer, R. Organome-
tallics 1995, 14, 305. (b) Belzner, J.; Dehnert, U.; Ihmels, H. Tetrahedron
2001, 57, 511. (c) Kira, M.; Ishida, S.; Iwamoto, T.; Kabuto, C. J. Am.
Chem. Soc. 2002, 124, 3830.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental details and char-
b
acterization data of the products. This material is available free of
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: ohmura@sbchem.kyoto-u.ac.jp; suginome@sbchem.
kyoto-u.ac.jp.
(10) Ohmura, T.; Masuda, K.; Furukawa, H.; Suginome, M. Orga-
nometallics 2007, 26, 1291.
(11) An attempt to synthesize 5a failed even in the reaction of 1a
using 1.0 equiv of 2. The reaction gave 3a (38% based on 1a) and 4
(94%) with a small amount of 5a, which was detected in GC-MS analysis
of the crude mixture.
(12) Screening of some quinones including DDQ and p-chloranil
indicated that p-bromanil was the most suitable reagent for the oxidation
of 5l. For properties of activated quinines, see: Fujita, M.; Fukuzumi, S.;
Matsubayashi, G.; Otera, J. Bull. Chem. Soc. Jpn. 1996, 69, 1107.
(13) Significant decomposition of 6 was observed when the reaction
was carried out without BSA. For DDQ oxidation in the presence of
BSA, see: Ryu, I.; Murai, S.; Hatayama, Y.; Sonoda, N. Tetrahedron Lett.
1978, 19, 3455.
’ ACKNOWLEDGMENT
This work is supported by Grant-in-Aid for Young Scientists (A)
from Ministry of Education, Culture, Sports, Science and Technology,
Japan. K.M. acknowledges JSPS for fellowship support. The authors
thank Dr. Y. Nagata for helping with X-ray crystallographic analysis.
’ REFERENCES
(1) West, R.; Gaspar, P. P. In The Chemistry of Organic Silicon
Compounds; Rappoport, Z.; Apeloig, Y., Eds.; Wiley: Weinheim, 1998;
Vol. 2, p 2463.
1324
dx.doi.org/10.1021/om200135u |Organometallics 2011, 30, 1322–1325