954
C.-K. Ryu et al. / Bioorg. Med. Chem. Lett. 21 (2011) 952–955
Table 1
Structures and antifungal activity for furo[2,3-f]quinolin-5-ols
NH
S
NH
2
2
NH
S
2
O
O
1
O
O
1
O
R
O
R
O
O
O
2
N
R
N
N
OH
OH
R
2
OH
3r-s
3a-e
3f-q
1
R
2
R
Compound
R1
R2
MICa
(lg/mL)
b
C. albicans
C. tropicalis
C. krusei
C. neoformans
A. niger
A. flavus
3a
3b
3c
3d
3e
3f
3g
3h
3i
3j
3k
3l
3m
3n
3o
3p
CH3CH2
CH3CH2
CH3
CH3
CH3CH2
F
H
H
H
H
F
CH3
CH3
H
H
H
Cl
CH3CH2
CH3CH2
—
—
—
—
Cl
Br
Br
CH3
CH3
H
F
Br
Cl
H
>50.0
12.5
50.0
0.8
50.0
6.3
6.3
6.3
6.3
25.0
25.0
12.5
25.0
12.5
50.0
50.0
25.0
25.0
25.0
50.0
3.2
12.5
12.5
25.0
12.5
1.6
>50.0
6.3
>50.0
6.3
25.0
3.2
12.5
12.5
6.3
0.8
3.2
3.2
1.6
25.0
25.0
25.0
50.0
50.0
1.6
1.6
3.2
1.6
25.0
25.0
25.0
6.3
50.0
6.3
50.0
>50.0
>50.0
>50.0
12.5
3.2
25.0
12.5
>50.0
25.0
50.0
1.6
3.2
3.2
1.6
25.0
12.5
3.2
3.2
3.2
6.3
6.3
25.0
50.0
50.0
0.8
0.8
1.6
50.0
50.0
1.6
0.8
3.2
F
H
0.8
1.6
12.5
25.0
12.5
6.3
6.3
6.3
12.5
50.0
50.0
>50.0
50.0
3.2
25.0
12.5
6.3
12.5
6.3
CH3
OH
CH3O
CH3
H
CH3
CH3CH2
—
—
—
—
25.0
12.5
50.0
12.5
50.0
6.3
>50.0
>50.0
25.0
1.6
6.3
12.5
12.5
12.5
25.0
50.0
>50.0
6.3
3q
3r
3s
7
3.2
6.3
50.0
25.0
50.0
>50.0
12.5
3.2
>50.0
>50.0
50.0
6.3
8
Fluconazole
5-Fluorocytosine
3.2
6.3
a
The MIC value was defined as the lowest concentration of the antifungal agent. MIC values were read after one day for Candida species and Cryptococcus neoformans, and
two days for Aspergillus species in 37 °C. The inoculum sizes contained approximately 1 ꢀ 105 cells/mL. Culture media tested were the modified Sabouraud dextrose broth
(Difco Lab.). The final concentration of antifungal agents was between 0.2 and 50.0 lg/mL.
b
Fungi tested: Candida albicans Berkout KCCM 50235, C. tropicalis Berkout KCCM 50662, C. krusei Berkout KCCM 11655, Cryptococcus neoformans KCCM 50564, Aspergillus
niger KCTC 1231, and Aspergillus flavus KCCM 11899.
2. Masubuchi, M.; Ebiike, H.; Kawasaki, K.; Sogabe, S.; Morikami, K.; Shiratori, Y.;
In conclusion, 4-arylthio-furo[2,3-f]quinolin-5-ol scaffolds 3f–q
were synthesized by cyclization of compounds 4 with 1 equiv of
Tsujii, S.; Fujii, T.; Sakata, K.; Hayase, M.; Shindoh, H.; Aoki, Y.; Ohtsuka, T.;
Shimma, N. Bioorg. Med. Chem. 2003, 11, 4463.
3. Abdel-Aziz, H. A.; Mekawey, A. A. I.; Dawood, K. M. Eur. J. Med. Chem. 2009, 44,
3637.
4. Chen, Y.; Chen, S.; Lu, X.; Cheng, H.; Ou, Y.; Cheng, H.; Zhou, G.-C. Bioorg. Med.
Chem. Lett. 2009, 19, 1851.
5. Weinberg, R. A.; McWherter, C. A.; Freeman, S. K.; Wood, D. C.; Gordon, J. I.; Lee,
S. C. Mol. Microbiol. 1995, 16, 241.
6. (a) Lodge, J. K.; Jackson-Machelski, E.; Toffaletti, D. L.; Perfect, J. R.; Gordon, J. I.
Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 12008; (b) Lodge, J. K.; Jackson-Machelski,
E.; Higgins, M.; McWherter, C. A.; Sikorski, J. A.; Devadas, B.; Gordon, J. I. J. Biol.
Chem. 1998, 273, 12482.
7. Ryu, C.-K.; Song, A. L.; Lee, J. Y.; Hong, J. A.; Yoon, J. H.; Kim, A. Bioorg. Med.
Chem. Lett. 2010, 20, 6777.
8. Middleton, R. W.; Parrick, J. In The Chemistry of The Quinonoid Compounds;
Patak, S., Rappoport, Z., Eds.; John Wiley & Sons: London, 1988; pp 1019–1066.
9. Nebois, P.; Cherkaoui, O.; Benameur, L.; Boitard, M.; Bartoli, M.-H.; Fillion, H.
Pharmazie 1999, 54, 215.
appropriate arylthiols 9. Furo[2,3-f]quinolin-5-ols 3a–e were
synthesized by cyclization of compounds with hydrazine.
4
4-Alkylthio-furo[2,3-f]quinolin-5-ols 3r–s were synthesized by
cyclization of compound 6a with 1 equiv of alkylthiols in EtOH.
Most of these reactions went as expected and had overall high
yields. We have identified a lead compound that has antifungal
activity by screening of our furo[2,3-f]quinolin-5-ols 3a–s. Among
them tested, many of furo[2,3-f]quinolin-5-ols showed potent anti-
fungal activity. The results suggest that furo[2,3-f]quinolin-5-ol
scaffolds would be promising leads for the development of anti-
fungal agents. Moreover, the results should encourage the synthe-
sis of furo[2,3-f]quinolin-5-ol analogs for improving antifungal
properties.
10. Benameur, L.; Bouaziz, Z.; Nebois, P.; Bartoli, M.-H.; Boitard, M.; Fillion, H.
Chem. Pharm. Bull. 1996, 44, 605.
Acknowledgments
11. Ryu, C.-K.; Choi, K. U.; Shim, J.-Y.; You, H.-J.; Choi, I. H.; Chae, M. J. Bioorg. Med.
Chem. 2003, 11, 4003.
12. (a) Pratt, Y. T.; Drake, N. L. J. Am. Chem. Soc. 1960, 82, 1155; (b) Yasuda, M.;
Boger, D. L. J. Med. Chem. 1987, 30, 1918.
13. Schellhammer, C. W.; Petersen, S. Ann. der Chem. 1959, 624, 108.
14. Ryu, C.-K.; Lee, J. Y.; Jeong, S. H.; Nho, J.-H. Bioorg. Med. Chem. Lett. 2009, 19,
146.
This study was supported by a Grant of the Korea Healthcare
Technology R&D Project, Ministry for Health, Welfare and Family
Affairs, Republic of Korea (A08-0414-AA1723-08N1-00010A).
15. (a) Pratt, Y. T. J. Org. Chem. 1962, 27, 3905; (b) Yoshida, K.; Ishiguro, M.; Honda,
H.; Yamamoto, M.; Kubo, Y. Bull. Chem. Soc. Jpn. 1988, 61, 4335.
References and notes
16. Compounds
6 were formed by regioselective nucleophilic substitution or
1. Masubuchi, M.; Kawasaki, K.; Ebiike, H.; Ikeda, Y.; Tsujii, S.; Sogabe, S.; Fujii, T.;
Sakata, K.; Shiratori, Y.; Aoki, Y.; Ohtsuka, T.; Shimma, N. Bioorg. Med. Chem.
Lett. 2001, 11, 1833.
addition of compounds 4 with 1 equiv of alkylcyanoacetates 5 and 0.1 equiv of
CeCl3 in the presence of NH4OH. As results of catalytic action of Ce3+ ions, the
substitution or addition in compounds 4 gave mainly 6-substituted products 6.