982
N. Li et al. / Tetrahedron Letters 52 (2011) 980–982
2. (a) L’Abbe, G. Chem. Rev. 1969, 69, 345–363; (b) Lwowski, W. In 1,3-Dipolar
O
C
Pd(0)
CO
R
Cycloaddition Chemistry; Padwa, A., Ed.; Wiley: New York, 1984; p 559; (c) Sha,
C.-K.; Mohanakrishnan, A. K. In Synthetic Applications of 1,3-Dipolar
Cycloaddition Chemistry Toward Heterocycles and Natural Products; Padwa, A.,
Pearson, W. H., Eds.; Wiley: New York, 2002; p 623.
Aryl
I
Aryl Pd
I
Aryl
Pd
I
II
(
)
I
(
)
H
Et3N
3. (a) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40, 2004–
2021; (b) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew.
Chem., Int. Ed. 2002, 41, 2596–2599; (c) Tornoe, C. W.; Christensen, C.; Meldal,
M. J. Org. Chem. 2002, 67, 3057–3064.
4. (a) Zhang, L.; Chen, X.; Xue, P.; Sun, H. H. Y.; Williams, I. D.; Sharpless, K. B.;
Fokin, V. V.; Jia, G. J. Am. Chem. Soc. 2005, 127, 15998–15999; (b) Boren, B. C.;
Narayan, S.; Rasmussen, L. K.; Zhang, L.; Zhao, H.; Lin, Z. Y.; Jia, G. C.; Fokin, V. V.
J. Am. Chem. Soc. 2008, 130, 8923–8930; (c) Rasmussen, L. K.; Boren, B. C.; Fokin,
V. V. Org. Lett. 2007, 9, 5337–5339.
5. (a) Hadjiantoniou-Maroulis, C. P.; Charalambopoulos, A. P.; Maroulis, A. J. J.
Heterocycl. Chem. 1998, 35, 891–894; (b) Butler, R. N.; Hanniffy, J. M.; Stephens,
J. C.; Burke, L. A. J. Org. Chem. 2008, 73, 1354–1364; (c) Tsai, C.-W.; Yang, S.-C.;
Liu, Y.-M.; Wu, M.-J. Tetrahedron 2009, 65, 8367–8372; (d) Jarowski, P. D.; Wu,
Y. L.; Schweizer, W. B.; Diederich, F. Org. Lett. 2008, 10, 3347–3350; (e) Kim, D.
K.; Kim, J.; Park, H. J. Bioorg. Med. Chem. Lett. 2004, 14, 2401–2405; (f) Trubulski,
E. J.; Benjamin, L.; Vitone, S.; Walser, A.; Fryer, R. I. J. Med. Chem. 1983, 26, 367–
372; (g) Yap, A. H.; Weinreb, S. M. Tetrahedron Lett. 2006, 47, 3035–3038; (h)
Harju, K.; Vahermo, M.; Mutikainen, I.; Yli-Kauhaluoma, J. J. Comb. Chem. 2003,
5, 826–833; (i) Gao, Y. N.; Lam, Y. Org. Lett. 2006, 8, 3283–3285.
6. (a) Zefirov, N. S.; Chapovsksya, N. K.; Kolesnikov, V. V. J. Chem. Soc., Dalton Trans.
1971, 17, 1001–1002; (b) Quiclet-Sire, B.; Zard, S. Z. Synthesis 2005, 19, 3319–
3326; (c) Sengupta, S.; Duan, H. F.; Lu, W. B.; Petersen, J. L.; Shi, X. D. Org. Lett.
2008, 10, 1493–1496.
Pd(0)
O
C
O
O
C
R
Aryl
Aryl
C
Aryl
R
H
or
Pd
R
(
)
Pd
I
IV
H
(
)
IIIA
(
)
IIIB
NaN3
O
C
O
R
N
R
C
Aryl
Aryl
N
N
N
N
N
(
)
(
)
VI
V
Na
H
Scheme 1. Possible mechanism to synthesize 4,5-disubstituted 1,2,3-(NH)-
triazoles.
I
1. PdCl (PPh ) (5mol%),
NO
R
1
2
3 2
2
R
1
Et N, rt, 14h, CO
3
+
NO
2
o
N
7. Li, J. H.; Wang, D.; Zhang, Y. Q.; Li, J. T.; Chen, B. H. Org. Lett. 2009, 11, 3024–
3027.
8. (a) Gabriele, B.; Salerno, G.; Veltri, L.; Costa, M.; Massera, C. Eur. J. Org. Chem.
2001, 4607; (b) Kondo, Y.; Shiga, F.; Murata, N.; Sakamoto, T.; Yamanaka, H.
Tetrahedron 1994, 50, 11803.
9. (a) Murray, T. F.; Samsel, E. G.; Varma, V.; Norton, J. R. J. Am. Chem. Soc. 1981,
103, 7520–7528; (b) Murray, T. F.; Norton, J. R. J. Am. Chem. Soc. 1979, 101,
4107–4119.
2. NaN , DMSO, 45
C
3
N
N
(5)
(1)
(2)
H
5a: R = n-C H , 4-NO PhI, yield 53%
5b: R = n-C H , 2-NO PhI, yield 32%
1
4
9
2
1
4
9
2
5c: R = n-C H , 4-NO PhI, yield 55%
1
8
17
2
Scheme 2. Synthesis of carboxide-free 4,5-disutituted 1,2,3-trizoles.
10. (a) Kondo, Y.; Sakamoto, T.; Yamanaka, H. Heterocycles 1989, 29, 1013; (b) Nan,
Y.; Miao, H.; Yang, Z. Org. Lett. 2000, 2, 297; (c) Hu, Y.; Yang, Z. Org. Lett. 2001, 3,
1387–1390; (d) Arcadi, A.; Rossi, E. Tetrahedron Lett. 1996, 37, 6811.
11. (a) Cacchi, S.; Fabrizi, G.; Pace, P.; Marinellib, F. Synlett 1999, 620; (b) Dai, G.;
Larock, R. C. J. Org. Chem. 2002, 67, 7042–7047.
12. Arcadi, A.; Anacardio, R.; D’Anniballe, G.; Gentile, M. Synlett 1997, 1315.
13. (a) Kamijo, S.; Jin, T.; Yamamoto, Y. Tetrahedron Lett. 2004, 45, 689–691; (b)
Zhao, Y.-B.; Yan, Z.-Y.; Liang, Y.-M. Tetrahedron Lett. 2006, 47, 1545–1549.
14. Typical procedure for the preparation of 4,5-disubstituted-1,2,3-(NH)-triazoles
developed based on carbonylative Sonogashira reaction in one pot.
The procedure is suitable to many substrates. Different 4,5-disub-
stituted-N-unsubstituted 1,2,3-triazoles can be produced using
cheap and easily available starting materials. The developed meth-
od is atom economic and performed easily, making it possibly
acceptable for industrial-scale production.
(synthesis of 3a):
A round-bottom sidearm flask (10 mL) containing
PdCl2(PPh3)2 (0.015 mmol) was subjected to the Schlenk-line procedures of
evacuation and purging of CO for three cycles. Iodobenzene and 4 equiv Et3N
(1.2 mmol) were successively added, and the mixture was stirred at room
temperature for 10 min, then 1-hexyne (0.45 mmol) was added, continuously
stirred at room temperature for 14 h. Then NaN3 (35.1 mg, 0.54 mmol) and
1 mL DMSO were added to the mixture and the reaction continued at 45 °C for
36 h. Following, to the reaction mixture was added water (2 mL), 20% HCl
solution (1 mL) and extracted with ether (3 Â 10 mL). The combined organic
phases were washed with brine (2 Â 5 mL), dried over anhydrous MgSO4 and
concentrated in vacuo. The residue was subjected to flash column
chromatography with hexanes/EtOAc (5/1) as eluent to obtain the desired 3a
(56.33 mg, 82% yield). All products gave satisfactory spectroscopic and
analytical data.
Acknowledgments
We are grateful to the project sponsored by the Scientific
Research Foundation for the State Education Ministry (No.
107108) and the Project of the National Science Foundation of PR
China (No. J0730425).
Supplementary data
15. Spectroscopic data for representative examples: (5-butyl-2H-1,2,3-triazol-4-
yl)(3,4-dimethylphenyl)methanone (3b, Table 2, entry 2): mp: 71–73 °C. IR
(cmÀ1):3166.68, 2959.12, 1646.18, 1472.08, 1325.62, 1258.03, 1118.52. 1H
NMR (400 MHz, CDCl3): d 8.00 (d, J = 6.0 Hz, 2H), 7.25 (t, J = 8.0 Hz, 1H), 3.06 (t,
J = 7.8 Hz, 2H), 2.32 (d, J = 4.8 Hz, 6H), 1.64–1.78 (m, 2H), 1.31–1.40 (m, 2H),
0.88 (t, J = 7.4 Hz, 3H). 13C NMR (100 MHz, CDCl3): d 187.64, 147.40, 142.74,
142.08, 136.68, 135.17, 131.29, 129.56, 128.24, 30.62, 24.34, 22.35, 20.01,
19.71, 13.64. MS m/z: 257 (M+, 30%), 242 (100), 228 (11), 214 (16), 200 (55),
133 (45), 122 (46), 105 (48), 77 (48), 41 (51). Anal. Calcd for C15H19N3O: C,
70.01; H, 7.44; N, 16.33. Found: C, 70.05; H, 7.46; N, 16.38. (5-Butyl-2H-1,2,3-
triazol-4-yl)(4-methoxyphenyl)methanone (3e, Table 2, entry 5): IR (cmÀ1):
3171.25, 2931.41, 1598.72, 1467.64, 1260.70, 1151.33, 921.09. 1H NMR
(400 MHz, CDCl3): d 8.32 (d, J = 8.8 Hz, 2H), 6.98 (d, J = 8.8 Hz, 2H), 3.87 (s,
3H), 3.08 (t, J = 7.8 Hz, 2H), 1.70 (t, J = 7.4 Hz, 2H), 1.34–1.39 (m, 2H), 0.87–0.91
(m, 3H). 13C NMR (100 MHz, CDCl3): d 186.35, 163.65, 147.38, 142.17, 132.87,
130.10, 113.59, 55.44, 30.63, 24.39, 22.37, 13.66. MS m/z: 259 (M+, 21%), 216
(55), 186 (41), 135 (100). Anal. Calcd for C14H17N3O2: C, 64.85; H, 6.61; N,
16.20. Found: C, 64.87; H, 6.67; N, 16.23. See Supplementary data for spectral
data of all other compounds.
Supplementary data associated with this article can be found, in
References and notes
1. (a) Sivakumar, K.; Xie, F.; Cash, B. M.; Long, S.; Barnhill, H. N.; Wang, Q. Org. Lett.
2004, 6, 4603–4606; (b) Kumar, R.; El-Sagheer, A.; Tumpane, J.; Lincoln, P.;
Wilhelmsson, L. M.; Brown, T. J. Am. Chem. Soc. 2007, 129, 6859–6864; (c)
Agard, N. J.; Prescher, J. A.; Bertozzi, C. R. J. Am. Chem. Soc. 2004, 126, 15046–
15047; (d) Moorhouse, A. D.; Santos, A. M.; Gunaratnam, M.; Moore, M.; Neidle,
S.; Moses, J. E. J. Am. Chem. Soc. 2006, 128, 15972–15973; (e) Manetsch, R.;
Krasiski, A.; Radi, Z.; Raushel, J.; Taylor, P.; Sharpless, K. B.; Kolb, H. C. J. Am.
Chem. Soc. 2004, 126, 12809–12818; (f) Whiting, M.; Muldoon, J.; Lin, Y. C.;
Silverman, S. M.; Lindstrom, W.; Olson, A. J.; Kolb, H. C.; Finn, M. G.; Sharpless,
K. B.; Elder, J. H.; Fokin, V. V. Angew. Chem., Int. Ed. 2006, 45, 1435–1439; (g)
Wang, J.; Sui, G.; Mocharla, V. P.; Lin, R. J.; Phelps, M. E.; Kolb, H. C.; Tseng, H.-R.
Angew. Chem., Int. Ed. 2006, 45, 5276–5281; (h) Sugawara, A.; Sunazuka, T.;
Hirose, T.; Nagai, K.; Yamaguchi, Y.; Hanaki, H.; Sharpless, K. B.; Omura, S.
Bioorg. Med. Chem. Lett. 2007, 17, 6340; (i) Fan, W. Q.; Katritzky, A. R. In
Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees, C. W., Scriven, C.
W. V., Eds.; Elsevier: Oxford, 1996; Vol. 4, pp 1–126; (j) Dehne, H. In Methoden
der Organischen Chemie (Houben-Weyl); Schaumann, E., Ed.; Thieme: Stuttgart,
1994; Vol. E8d, pp 305–405; (k) Krivopalov, V. P.; Shkurko, O. P. Russ. Chem. Rev.
2005, 74, 339.
16. (a) Mohamed Ahmed, M. S.; Mori, A. Org. Lett. 2003, 5, 3057; (b) Liang, B.;
Huang, M. W.; You, Z. J.; Xiong, Z. C.; Lu, K.; Fathi, R.; Chen, J. H.; Yang, Z. J. Org.
Chem. 2005, 70, 6097–6100; (c) Liu, J. H.; Chen, J.; Xia, C. G. J. Catal. 2008, 253,
50–56.
17. Sonogashira, K. J. Organomet. Chem. 2002, 653, 46.
18. Li, C. L.; Li, X. L.; Zhu, Q. Q.; Cheng, H. Y.; Lv, Q. R.; Chen, B. H. Catal. Lett. 2009,
127, 152–157.