agreement with the increasing steric hindrance of the ortho-alkyl
groups. This was surprising at first since more hindered complex
gave higher activity. However, these results are not unprecedented
because there are reports that sterically demanding substituents
enhanced the catalytic activity of the catalysts.12 In addition, the
iPr groups in 2e are more electron donating making the complex
more nucleophilic.
For complex 2e, the polymerizations using higher e-CL:Sn
molar ratios of 1000, 5000, and 10000 were performed at 110 ◦C
(Table 1, entries 11–13). Great care was taken to exclude moisture
Notes and references
1 (a) A. Arbaoui and C. Redshaw, Polym. Chem., 2010, 1, 801–826; (b) K.
E. Uhrich, S. M. Cannizzaro, R. S. Langer and K. M. Shakesheff, Chem.
Rev., 1999, 99, 3181–3198; (c) A. P. Gupta and V. Kumar, Eur. Polym.
J., 2007, 43, 4053–4074.
2 (a) O. Dechy-Cabaret, B. Martin-Vaca and D. Bourissou, Chem. Rev.,
2004, 104, 6147–6176; (b) Z. Zhong, P. J. Dijkstra and J. Feijen, J.
Biomater. Sci., Polym. Ed., 2004, 15, 929–946; (c) M. H. Chisholm,
Inorg. Chim. Acta, 2009, 362, 4284–4290; (d) K. Nakano, N. Kosaka,
T. Hiyama and K. Nozaki, Dalton Trans., 2003, 4039–4050; (e) B. J.
O’Keefe, M. A. Hillymer and W. B. Tolman, J. Chem. Soc., Dalton
Trans., 2001, 2215–2224; (f) M. J. Stanford and A. P. Dove, Chem.
Soc. Rev., 2010, 39, 486–494; (g) C. A. Wheaton, P. G. Hayes and B.
J. Ireland, Dalton Trans., 2009, 4832–4846; (h) J. Wu, T.-L. Yu, C.-T.
Chen and C.-C. Lin, Coord. Chem. Rev., 2006, 250, 602–626; (i) R.
H. Platel, L. M. Hodgson and C. K. Williams, Polym. Rev., 2008, 48,
11–63.
or impurities from the reaction. In entry 13, PCL with Mn
=
160,600 Da was obtained in 1 h. For 1000 : 1 and 5000 : 1 molar
ratios, the polymerizations finished in 5 and 20 min having the
Mn¢s of 70,100 and 137,400 Da, respectively.
The difference between surfaces of PCL synthesized with and
without addition of BnOH was also observed by water contact
angle analysis.13 Polymers having similar molecular weights based
on GPC were chosen. The average water contact angle of PCL
(Table 1, entry 10, synthesized without addition of alcohol) is
107.4 2.5◦ while that of entry 5 (with addition of BnOH) is 92.8
0.6◦.
3 (a) P. Dege´e, P. Dubois, R. Jeroˆme, S. Jacobsen and H.-G. Fritz,
Macromol. Symp., 1999, 144, 289; (b) H. R. Kricheldorf, J. Polym.
Sci., Part A: Polym. Chem., 2004, 42, 4723–4742.
4 (a) N. Nimitsiriwat, V. C. Gibson, E. L. Marshall and M. R. J. Elsegood,
Dalton Trans., 2009, 3710–3715; (b) N. Nimitsiriwat, V. C. Gibson, E.
L. Marshall and M. R. J. Elsegood, Inorg. Chem., 2008, 47, 5417–5424;
(c) N. Nimitsiriwat, V. C. Gibson, E. L. Marshall, A. J. P. White, S. H.
Dale and M. R. J. Elsegood, Dalton Trans., 2007, 4464–4471; (d) K. B.
Aubrecht, M. A. Hillmyer and W. B. Tolman, Macromolecules, 2002,
35, 644–650.
In conclusion, a series of bis(amidinate) tin(II) complexes were
successfully synthesized and characterized. The major advantage
is the simplicity of complex preparation and a large number of
possible ligand library to fine tune both reactivity and selectivity
of the catalysts. The bis(amidinate) tin(II) complexes are active
for the polymerization of e-CL in the pressence and absence of
alcohol giving high-molecular-weight PCL. Although the low-
molecular-weight PCL synthesized using a low e-CL:Sn molar
ratio of 10 : 1 in the absence of alcohol was shown to be cyclic
based on mass spectrometry and NMR, the exact topology
(linear or cyclic) of high-molecular-weight PCL synthesized using
higher e-CL:Sn molar ratio is still uncertain due to the lack of
access to required instruments (e.g. viscometer, light scattering
detector) used to prove the cyclic structure.7,14 Nonetheless, the
bis(amidinate) tin(II) complexes are highly active for the solvent-
free polymerization of e-CL in the presence and absence of BnOH
giving high-molecular-weight PCL. This catalyst system is much
more active than the commercial Sn(Oct)2 catalyst. Amidinate
ligands having electron-donating group were found to accelerate
the polymerization by making the complex more nucleophilic.
Further attempts to characterize the polymers and to understand
the insight mechanism of the polymerization are in progress.
We acknowledge financial support from Commission on Higher
Education, The Thailand Research Fund, and Mahidol Uni-
versity. Financial support from the Center of Excellence for
Innovation in Chemistry (PERCH-CIC), Commission on Higher
Education, Ministry of Education is gratefully acknowledged.
This work is also supported by Center for Catalysis and Faculty of
Science, Mahidol University. We thank Pailin Srisuratsiri for help
with X-ray crystallography.
5 (a) G. W. Nyce, T. Glauser, E. F. Connor, A. Mo¨ck, R. M. Waymouth
and J. L. Hedrick, J. Am. Chem. Soc., 2003, 125, 3046–3056; (b) T.
R. Jensen, L. E. Breyfogle, M. A. Hillmyer and W. B. Tolman, Chem.
Commun., 2004, 2504–2505; (c) A. P. Dove, H. Li, R. C. Pratt, B. G. G.
Lohmeijer, D. A. Culkin, R. M. Waymouth and J. L. Hedrick, Chem.
Commun., 2006, 2881–2883.
6 N. E. Kamber, W. Jeong, S. Gonzalez, J. L. Hedrick and R. M.
Waymouth, Macromolecules, 2009, 42, 1634–1639.
7 D. A. Culkin, W. Jeong, S. Csihony, E. D. Gomez, N. P. Balsara, J.
L. Hedrick and R. M. Waymouth, Angew. Chem., Int. Ed., 2007, 46,
2627.
8 T. Gans-Eichler, D. Gudat and M. Nieger, Angew. Chem., Int. Ed.,
2002, 41, 1888–1891.
9 (a) N. Nimitsiriwat, V. C. Gibson, E. L. Marshall, A. J. P. White, S.
H. Dale and M. R. J. Elsegood, Dalton Trans., 2007, 4464–4471; (b) Y.
Zhou and D. S. Richeson, J. Am. Chem. Soc., 1996, 118, 10850–10852;
(c) P. B. Hitchcock, M. F. Lappert and M. Layh, J. Chem. Soc., Dalton
Trans., 1998, 3113–3117; (d) S. R. Foley, Y. Zhou, G. P. A. Yap and D.
S. Richeson, Inorg. Chem., 2000, 39, 924–929; (e) K. B. Aubrecht, M.
A. Hillmyer and W. B. Tolman, Macromolecules, 2002, 35, 644–650;
(f) F. Antolini, P. B. Hitchcock, A. V. Khvostov and M. F. Lappert,
Can. J. Chem., 2006, 84, 269–276.
10 (a) J. N. Hoskins and S. M. Grayson, Macromolecules, 2009, 42, 6406–
6413; (b) H. E. Dyer, S. Huijser, A. D. Schwarz, C. Wang, R. Duchateau
and P. Mountford, Dalton Trans., 2008, 32–35; (c) K. C. Hultzsch, T.
P. Spaniol and J. Okuda, Organometallics, 1997, 16, 4845–4856; (d) C.
E. Willans, M. A. Sinenkov, G. K. Fukin, K. Sheridan, J. M. Lynam,
A. A. Trifonov and F. M. Kerton, Dalton Trans., 2008, 3592.
11 H. R. Kricheldorf, G. Behnken, G. Schwarz and J. Kopf, Macro-
molecules, 2008, 41, 4102–4107.
12 M. H. Chisholm, N. W. Eilerts, J. C. Huffman, S. S. Iyer, M. Pacold
and K. Phomphrai, J. Am. Chem. Soc., 2000, 122, 11845–11854.
13 P. G. de Gennes, Rev. Mod. Phys., 1985, 57, 827–863.
14 (a) C. W. Bielawski, D. Benitez and R. H. Grubbs, Science, 2002,
297, 2041–2044; (b) D. Cho, K. Masuoka, K. Koguchi, T. Asari, D.
Kawaguchi, A. Takano and Y. Matsushita, Polym. J., 2005, 37, 506–
511.
This journal is
The Royal Society of Chemistry 2011
Dalton Trans., 2011, 40, 2157–2159 | 2159
©