ylides possessing an a-carbonyl group have been successfully
employed in oxirane formation.
Table 3 Reaction of different aromatic aldehydes with 2
This work was supported by the Austrian Science Funds
(FWF) Project No. P22508-N17.
Notes and references
Yieldb transc
Entry Ar
Aldehyde Product Cond.a (%)
(%)
1 (a) E. J. Corey and M. Chaykovsky, J. Am. Chem. Soc., 1962, 84,
867; (b) E. J. Corey and M. Chaykovsky, J. Am. Chem. Soc., 1965,
87, 1353; (c) A. W. Johnson and R. B. Lacount, Chem. Ind., 1958,
1440.
2 (a) V. K. Aggarwal, in Comprehensive Asymmetric Catalysis,
ed. E. N. Jacobsen, A. Pfaltz and H. Yamamoto, Springer,
New York, 1999, vol. 2, p. 679; (b) E. M. McGarrigle,
E. L. Myers, O. Illa, M. A. Shaw, S. L. Riches and
V. K. Aggarwal, Chem. Rev., 2007, 107, 5841.
3 (a) O. Illa, M. Arshad, A. Ros, E. M. McGarrigle and
V. K. Aggarwal, J. Am. Chem. Soc., 2010, 132, 1828;
(b) J. Zanardi, C. Leriverend, D. Aubert, K. Julienne and
P. Metzner, J. Org. Chem., 2001, 66, 5620; (c) M. Davoust,
J.-F. Briere, P.-A. Jaffres and P. Metzner, J. Org. Chem., 2005,
70, 4166.
4 For syntheses of glycidic amides see: (a) Y.-G. Zhou, X.-L. Hou,
L.-X. Dai, L.-J. Xia and M.-H. Tang, J. Chem. Soc., Perkin Trans.
1, 1999, 77; (b) V. K. Aggarwal, J. P. H. Charmant, D. Fuentes,
J. N. Harvey, G. Hynd, D. Ohara, W. Picoul, R. Robiette,
C. Smith, J.-L. Vasse and C. L. Winn, J. Am. Chem. Soc., 2006,
128, 2105; (c) V. K. Aggarwal, G. Hynd, W. Picoul and J.-L. Vasse,
J. Am. Chem. Soc., 2002, 124, 9964.
5 M. J. Porter and J. Skidmore, Chem. Commun., 2000, 1215.
6 For impressive examples see: (a) T. Nemoto, H. Kakei,
V. Gnanadesikan, S.-Y. Tosaki, T. Ohshima and M. Shibasaki,
J. Am. Chem. Soc., 2002, 124, 14544; (b) S. Matsunaga,
T. Kinoshita, S. Okada, S. Harada and M. Shibasaki, J. Am.
Chem. Soc., 2004, 126, 7559.
7 For two different stereoselective approaches see: (a) S. Arai,
K. Tokumaru and T. Aoyama, Tetrahedron Lett., 2004, 45, 1845;
(b) E. J. Corey and S. Choi, Tetrahedron Lett., 1991, 32, 2857.
8 (a) M. J. Gaunt and C. C. C. Johansson, Chem. Rev., 2007, 107,
5596; (b) C. C. C. Johansson, N. Bremeyer, S. V. Ley, D. R. Owen,
S. C. Smith and M. J. Gaunt, Angew. Chem., Int. Ed., 2006, 45,
6024; (c) C. D. Papageorgiou, M. A. Cubillo de Dios, S. V. Ley and
M. J. Gaunt, Angew. Chem., Int. Ed., 2004, 43, 4641;
(d) N. Bremeyer, S. C. Smith, S. V. Ley and M. J. Gaunt,
Angew. Chem., Int. Ed., 2004, 43, 2681; (e) C. D. Papageorgiou,
S. V. Ley and M. J. Gaunt, Angew. Chem., Int. Ed., 2003, 42, 828.
9 (a) R. Robiette, M. Conza and V. K. Aggarwal, Org. Biomol.
Chem., 2006, 4, 621; (b) V. K. Aggarwal, J. N. Harvey and
R. Robiette, Angew. Chem., Int. Ed., 2005, 44, 5468.
1
2
3
4
5
6
7
8
9
10
Ph–
1
3
A
A
A
Ad
A
B
A
B
A
C
67
68
72
82
499
499
499
499
499
499
499
4-MeC6H4–
4-ClC6H4–
4-ClC6H4–
4-MeOC6H4– 14
4-MeOC6H4– 14
4-Me2NC6H4– 16
4-Me2NC6H4– 16
4-NO2C6H4– 18
4-NO2C6H4– 18
10
12
12
11
13
13
15
15
17
17
19
19
47
50
o5e
o20e,f 499
o10e,g 499
o10e,g 499
a
A: 0 - 25 1C, 24 h; 100 equiv. NaOH; B: 40 1C, 24 h, 100 equiv.
b
c
NaOH; C: 0 1C, 24 h, 50 equiv. NaOH Isolated yields. Determined
d
e
by 1H NMR of the crude product. 3 equiv. of 12 were used. Judged
by 1H NMR of the crude product. The product decomposed during
f
g
column chromatography. Complete Cannizzaro decomposition of 18.
more electron rich dimethylaminobenzaldehyde 16 showed
only minor conversion, giving just traces of product under
standard conditions. By contrast, the highly electron-deficient
nitrobenzaldehyde 18 was fully consumed within 24 h, but
giving mainly the corresponding Cannizzaro products and less
than 10% of the product 19 even at reduced temperature and
using less base (entries 9 and 10). Reaction of the deactivated
14 at elevated temperature (40 1C, entry 6) resulted in almost
full conversion of 14 after 24 h, giving 15 in 50% accompanied
with unidentified by-products. This can be rationalized by
decomposition of the aldehyde 14 as well as the oxirane 15
under these harsher basic conditions. On the other hand, even
under these conditions, 16 was found to be rather unreactive
yielding less than 20% of 17 (entry 8).
Accordingly, the aptitude of different aldehydes for this type
of reaction strongly depends on their electronic properties.
Whereas similarly activated aldehydes like 1, 10, and 12 give
the glycidic amides in good yields, the electron poor 18 is
prone to rapid Cannizzaro decomposition under the highly
basic conditions. On the other hand, electron rich aldehydes
like 14 and 16 are significantly less reactive.
10 C.-Y. Zhu, X.-M. Deng, X.-L. Sun, J.-C. Zheng and Y. Tang,
Chem. Commun., 2008, 738.
11 For the use of cyano-stabilised ammonium ylides see: (a) A.
Kowalkowska, D. Sucholbiak and A. Jonczyk, Eur. J. Org. Chem.,
2005, 925; (b) A. Jonczyk and A. Konarska, Synlett, 1999, 1085.
12 A. Alex, B. Larmanjat, J. Marrot, F. Couty and O. David,
Chem. Commun., 2007, 2500.
13 For benzylic ammonium ylides see: T. Kimachi, H. Kinoshita,
K. Kusaka, Y. Takeuchi, M. Aoe and M. Ju-ichi, Synlett, 2005,
842.
14 Y. Wang, Z. Chen, A. Mi and W. Hu, Chem. Commun., 2004, 2486.
15 An extensive study about ylide stability has recently been reported:
Y. Fu, H.-J. Wang, S.-S. Chong, Q.-X. Guo and L. Liu, J. Org.
Chem., 2009, 74, 810.
16 Ammonium additives might suppress Cannizzaro reactions:
G. W. Gokel, H. M. Gerdes and N. W. Rebert, Tetrahedron Lett.,
1976, 17, 653.
In conclusion, although ammonium ylides bearing an
a-carbonyl group are less reactive in oxirane synthesis than
sulfur ylides, excellent trans-selectivity and acceptable yields
could be achieved by reacting amide-derived ammonium ylides
with aromatic aldehydes. Key to success is the use of biphasic
conditions together with a two-fold excess of aldehyde. The
reaction is tolerant to different tertiary amide groups whereas
secondary amides are less reactive. Using differently activated
aldehydes, the outcome was strongly dependent on the
electronic properties of the electrophile. Thus, it seems reasonable
that this reaction is very close to the limit of what is possible
with ammonium ylides. Nevertheless, to the best of our
knowledge, this is the first time that stabilised ammonium
17 K. Julienne and P. Metzner, J. Org. Chem., 1998, 63, 4532.
18 Using 2 equiv. of aldehyde represents a good compromise between
required amount of starting materials and obtained yield.
c
2172 Chem. Commun., 2011, 47, 2170–2172
This journal is The Royal Society of Chemistry 2011