Journal of Medicinal Chemistry
ARTICLE
’ ACKNOWLEDGMENT
(14) Skoufias, D. A.; DeBonis, S.; Saoudi, Y.; Lebeau, L.; Crevel, I.;
Cross, R.; Wade, R. H.; Hackney, D.; Kozielski, F. S-Trityl-L-cysteine is a
reversible, tight binding inhibitor of the human kinesin Eg5 that
specifically blocks mitotic progression. J. Biol. Chem. 2006, 281,
17559–17569.
(15) Kozielski, F.; Skoufias, D. A.; Indorato, R. L.; Saoudi, Y.;
Jungblut, P. R.; Hustoft, H. K.; Strozynski, M.; Thiede, B. Proteome
analysis of apoptosis signaling by S-trityl-L-cysteine, a potent reversible
inhibitor of human mitotic kinesin Eg5. Proteomics 2008, 8, 289–300.
(16) Ogo, N.; Oishi, S.; Matsuno, K.; Sawada, J.; Fujii, N.; Asai, A.
Synthesis and biological evaluation of L-cysteine derivatives as mitotic
kinesin Eg5 inhibitors. Bioorg. Med. Chem. Lett. 2007, 17, 3921–3924.
(17) Debonis, S.; Skoufias, D. A.; Indorato, R. L.; Liger, F.; Marquet,
B.; Laggner, C.; Joseph, B.; Kozielski, F. Structure-activity relationship
of S-trityl-L-cysteine analogues as inhibitors of the human mitotic kinesin
Eg5. J. Med. Chem. 2008, 51, 1115–1125.
We thank David Flot of ESRF and of EMBL-Grenoble and
Katherine McAuley of Diamond Light Source for assistance and
support in using beamlines ID29 and I03, respectively. We also
thank Anna-Lena Gund and Stephanie Rosenzweig for their
excellent technical assistance with the growth inhibition assays.
Kristal Kaan holds a National Science Scholarship and is financed
by A*STAR, Singapore. This publication contains part of the
doctoral thesis of KK. Katarzyna Tkocz held a Leonardo da Vinci
Lifelong Learning Programme scholarship. We thank CR-UK for
financial support.
’ ABBREVIATIONS USED
DMSO, dimethylsulfoxide; FCS, fetal calf serum; GI50, half-max-
imum growth inhibitory concentration; IC50, median inhibitory
concentration; Kiapp, apparent inhibition constant; KSP, kinesin
spindle protein; MTs, microtubules; NCI, National Cancer In-
stitute; PDB, Protein Data Bank; STDC, S-trityl-D-cysteine;
STLC, S-trityl-L-cysteine; MI50, 50% mitotic index concentra-
tion; MDR, multidrug resistance; Pgp, P-glycoprotein; CENP-E,
centromere-associated protein E; PLK1, polo-like kinase 1; SAR,
structure-activity relationship; DMEM, Dulbecco’s Modified
Eagle Medium; PBS, phosphate buffered saline; ni, no inhibition;
nd, not determined; nt, not tested
(18) Zee-Cheng, K. Y.; Cheng, C. C. Experimental antileukemic
agents. Preparation and structure-activity study of S-tritylcysteine and
related compounds. J. Med. Chem. 1970, 13, 414–418.
(19) Konig, W.; Geiger, R.; Siedel, W. New S-protecting groups for
cystein. Chem. Ber. 1968, 101, 681–693.
(20) Marvel, C. S.; Dietz, F. C.; Himel, C. M. The dissociation of
hexaarylethanes. XIII. Halogen substituents. J. Org. Chem. 1942, 7, 392–396.
(21) Murphy, D. J. Determination of accurate KI values for tight-
binding enzyme inhibitors: an in silico study of experimental error and
assay design. Anal. Biochem. 2004, 327, 61–67.
(22) Kaan, H. Y.; Ulaganathan, V.; Hackney, D. D.; Kozielski, F. An
allosteric transition trapped in an intermediate state of a new kinesin-
inhibitor complex. Biochem. J. 2010, 425, 55–60.
(23) Wiltshire, C.; Singh, B. L.; Stockley, J.; Fleming, J.; Doyle, B.;
Barnetson, R.; Robson, C. N.; Kozielski, F.; Leung, H. Y. Docetaxel-
resistant prostate cancer cells remain sensitive to S-trityl-L-cysteine-
mediated Eg5 inhibition. Mol. Cancer Ther. 2010, 9, 1730–1739.
(24) Sakowicz, R.; Finer, J. T.; Beraud, C.; Crompton, A.; Lewis, E.;
Fritsch, A.; Lee, Y.; Mak, J.; Moody, R.; Turincio, R.; Chabala, J. C.;
Gonzales, P.; Roth, S.; Weitman, S.; Wood, K. W. Antitumor activity of a
kinesin inhibitor. Cancer Res. 2004, 64, 3276–3280.
’ REFERENCES
(1) Jordan, M. A.; Wilson, L. Microtubules as a target for anticancer
drugs. Nature Rev. Cancer 2004, 4, 253–265.
(2) Orr, G. A.; Verdier-Pinard, P.; McDaid, H.; Horwitz, S. B.
Mechanisms of Taxol resistance related to microtubules. Oncogene
2003, 22, 7280–7295.
(3) Kavallaris, M. Microtubules and resistance to tubulin-binding
agents. Nature Rev. Cancer 2010, 10, 194–204.
(25) Marcus, A. I.; Peters, U.; Thomas, S. L.; Garrett, S.; Zelnak, A.;
Kapoor, T. M.; Giannakakou, P. Mitotic kinesin inhibitors induce
mitotic arrest and cell death in Taxol-resistant and -sensitive cancer
cells. J. Biol. Chem. 2005, 280, 11569–11577.
(4) Kerns, E. H.; Di, L. Drug-Like Properties: Concepts, Structure
Design and Methods. From ADME to Toxicity Optimization. Elsevier: New
York, 2008.
(5) Sarli, V.; Giannis, A. Targeting the kinesin spindle protein: basic
principles and clinical implications. Clin. Cancer Res. 2008, 14, 7583–
7587.
(6) Huszar, D.; Theoclitou, M. E.; Skolnik, J.; Herbst, R. Kinesin
motor proteins as targets for cancer therapy. Cancer Metastasis Rev. 2009,
28, 197–208.
(26) Peters, T.; Lindenmaier, H.; Haefeli, W. E.; Weiss, J. Interaction
of the mitotic kinesin Eg5 inhibitor monastrol with P-glycoprotein.
Naunyn Schmiedeberg's Arch. Pharmacol. 2006, 372, 291–299.
(27) Cox, C. D.; Breslin, M. J.; Whitman, D. B.; Coleman, P. J.;
Garbaccio, R. M.; Fraley, M. E.; Zrada, M. M.; Buser, C. A.; Walsh, E. S.;
Hamilton, K.; Lobell, R. B.; Tao, W.; Abrams, M. T.; South, V. J.; Huber,
H. E.; Kohl, N. E.; Hartman, G. D. Kinesin spindle protein (KSP)
inhibitors. Part V: discovery of 2-propylamino-2,4-diaryl-2,5-dihydro-
pyrroles as potent, water-soluble KSP inhibitors, and modulation of their
basicity by beta-fluorination to overcome cellular efflux by P-glycopro-
tein. Bioorg. Med. Chem. Lett. 2007, 17, 2697–2702.
(28) Cox, C. D.; Coleman, P. J.; Breslin, M. J.; Whitman, D. B.;
Garbaccio, R. M.; Fraley, M. E.; Buser, C. A.; Walsh, E. S.; Hamilton, K.;
Schaber, M. D.; Lobell, R. B.; Tao, W.; Davide, J. P.; Diehl, R. E.; Abrams,
M. T.; South, V. J.Huber, H. E.; Torrent, M.; Prueksaritanont, T.; Li, C.;
Slaughter, D. E.; Mahan, E.; Fernandez-Metzler, C.; Yan, Y.; Kuo, L. C.;
Kohl, N. E.; Hartman, G. D. Kinesin spindle protein (KSP) inhibitors. 9.
Discovery of (2S)-4-(2,5-difluorophenyl)-n-[(3R,4S)-3-fluoro-1-methyl-
piperidin-4-yl]-2-(hydroxymethyl)-N-methyl-2-phenyl-2,5-dihydro-1H-
pyrrole-1-carboxamide(MK-0731) forthe treatment of taxane-refractory
cancer. J. Med. Chem. 2008, 51, 4239–4352.
(7) Strebhardt, K.; Ullrich, A. Targeting polo-like kinase 1 for cancer
therapy. Nature Rev. Cancer 2006, 6, 321–330.
(8) Jackson, J. R.; Patrick, D. R.; Dar, M. M.; Huang, P. S. Targeted
anti-mitotic therapies: can we improve on tubulin agents?. Nature Rev.
Cancer 2007, 7, 107–117.
(9) Wood, K. W.; Chua, P.; Sutton, D.; Jackson, J. R. Centromere-
associated protein E: a motor that puts the brakes on the mitotic
checkpoint. Clin. Cancer Res. 2008, 14, 7588–7592.
(10) Blangy, A.; Lane, H. A.; d’Herin, P.; Harper, M.; Kress, M.;
Nigg, E. A. Phosphorylation by p34cdc2 regulates spindle association of
human Eg5, a kinesin-related motor essential for bipolar spindle
formation in vivo. Cell 1995, 83, 1159–1169.
(11) Rowinsky, E. K.; Eisenhauer, E. A.; Chaudhry, V.; Arbuck, S. G.;
Donehower, R. C. Clinical toxicities encountered with paclitaxel
(Taxol). Semin. Oncol. 1993, 20, 1–15.
(12) DeBonis, S.; Skoufias, D. A.; Lebeau, L.; Lopez, R.; Robin, G.;
Margolis, R. L.; Wade, R. H.; Kozielski, F. In vitro screening for
inhibitors of the human mitotic kinesin Eg5 with antimitotic and
antitumor activities. Mol. Cancer Ther. 2004, 3, 1079–1090.
(13) Kozielski, F.; DeBonis, S.; Skoufias, D. A. Screening for
inhibitors of microtubule-associated motor proteins. Methods Mol.
Med. 2007, 137, 189–207.
(29) Gold Suite 1.0.1; Cambridge Crystallographic Data Centre:
Cambridge, UK, 2008.
(30) Kim, E. D.; Buckley, R.; Learman, S.; Richard, J.; Parke, C.;
Worthylake, D. K.; Wojcik, E. J.; Walker, R. A.; Kim, S. Allosteric drug
discrimination is coupled to mechanochemical changes in the kinesin-5
motor core. J. Biol. Chem. 2010, 285, 18650–18661.
1585
dx.doi.org/10.1021/jm100991m |J. Med. Chem. 2011, 54, 1576–1586