Journal of the American Chemical Society
COMMUNICATION
1R. Pleasingly, truncated Alchemical FEP simulations (Table 1)
show only a small difference in the relative binding energy ΔΔG
= 0.2 kcal/mol between TP-1R and TP-1P.
1994, 91, 197–201. (b) Rumbaugh, K. P.; Griswold, J. A.; Hamood, A. N.
Microbes Infection/Institut Pasteur 2000, 2, 1721–1731. (c) Schuster, M.;
Lostroh, C. P.; Ogi, T.; Greenberg, E. P. J. Bacteriol. 2003,
185, 2066–2079. (d) Wagner, V. E.; Gillis, R. J.; Iglewski, B. H. Vaccine
2004, 22 (Suppl. 1), S15–20. (e) Heurlier, K.; Denervaud, V.; Haas, D.
Int. J. Med. Microbiol. 2006, 296, 93–102.
Due to the high degree of shape similarity of TP-1R and TP-
1P, both compounds’ ability to make hydrogen bonds through
their amide moiety to nearby residues, and the low ΔΔG of
binding between the two molecules, it is not surprising from our
simulations that they are both of similar potency. The positioning
of the nitro and chloro groups within the binding pocket of LasR
with no consistent hydrogen-bonding or electrostatic interac-
tions with nearby residues sheds light on the similar activity
observed with TP-1P and TP-1R. To investigate the effect of the
scaffold alone, 2-(benzamidomethyl)phenyl benzoate (13) was
synthesized in one step from 2-hydroxybenzyl amine and benzoic
acid and tested in the P. aeruginosa reporter assay. This com-
pound failed to give any QS activation at concentrations up to 10
μM (Table 1). Thus, while the regiochemical interchange of the
nitro and chloro substituents does not seem paramount for
activity, the presence of an electronegative substituent appears
to be critical for LasR binding, dimerization, and ultimately gene
expression.
(4) (a) Dong, Y. H.; Xu, J. L.; Li, X. Z.; Zhang, L. H. Proc. Natl. Acad.
Sci. U.S.A. 2000, 97, 3526–3531. (b) Kaufmann, G. F.; Sartorio, R.; Lee,
S. H.; Mee, J. M.; Altobell, L. J., III; Kujawa, D. P.; Jeffries, E.; Clapham,
B.; Meijler, M. M.; Janda, K. D. J. Am. Chem. Soc. 2006, 128, 2802–2803.
(c) De Lamo Marin, S.; Xu, Y.; Meijler, M. M.; Janda, K. D. Bioorg. Med.
Chem. Lett. 2007, 17, 1549–1552. (d) Geske, G. D.; O’Neill, J. C.; Miller,
D. M.; Mattmann, M. E.; Blackwell, H. E. J. Am. Chem. Soc. 2007,
129, 13613–13625. (e) Kaufmann, G. F.; Park, J.; Mee, J. M.; Ulevitch,
R. J.; Janda, K. D. Mol Immunol 2008, 45, 2710–2714. (f) Amara, N.;
Mashiach, R.; Amar, D.; Krief, P.; Spieser, S. A.; Bottomley, M. J.;
Aharoni, A.; Meijler, M. M. J. Am. Chem. Soc. 2009, 131, 10610–10619.
(g) Kapadnis, P. B.; Hall, E.; Ramstedt, M.; Galloway, W. R.; Welch, M.;
Spring, D. R. Chem. Commun. (Cambridge, UK) 2009, 538–540. (h)
Swem, L. R.; Swem, D. L.; O’Loughlin, C. T.; Gatmaitan, R.; Zhao, B.;
Ulrich, S. M.; Bassler, B. L. Mol. Cell 2009, 35, 143–153. (i) Amara, N.;
Krom, B. P.; Kaufmann, G. F.; Meijler, M. M. Chem. Rev. 2011,
111, 195–208.
(5) (a) Suga, H.; Smith, K. M. Curr. Opin. Chem. Biol. 2003,
7, 586–591. (b) Ni, N.; Li, M.; Wang, J.; Wang, B. Med. Res. Rev.
2009, 29, 65–124. (c) Lowery, C. A.; Salzameda, N. T.; Sawada, D.;
Kaufmann, G. F.; Janda, K. D. J. Med. Chem. 2010, 53, 7467–7489. (d)
Mattmann, M. E.; Blackwell, H. E. J. Org. Chem. 2010, 75, 6737–6746.
(6) Muh, U.; Schuster, M.; Heim, R.; Singh, A.; Olson, E. R.;
Greenberg, E. P. Antimicrob. Agents Chemother. 2006, 50, 3674–3679.
(7) Muh, U.; Hare, B. J.; Duerkop, B. A.; Schuster, M.; Hanzelka,
B. L.; Heim, R.; Olson, E. R.; Greenberg, E. P. Proc. Natl. Acad. Sci. U.S.A.
2006, 103, 16948–16952.
In summary, through chemical synthesis, we have firmly estab-
lished the chemical identities of TP-1R/TP-1P, and through model-
ing, we have ascertained the minimal necessary chemical architecture
for LasR activation. Lastly, we highlight the potential synthetic
interchangeable pieces found within the 2-(benzamidomethyl)phenyl
benzoate. The ester and amide units could readily serve as a viable
grounding for the diversity and development of additional agonists
and antagonists against LasR-dependent QS in P. aeruginosa.
(8) Zou, Y.; Nair, S. K. Chem. Biol. 2009, 16, 961–970.
(9) Duan, K.; Surette, M. G. J. Bacteriol. 2007, 189, 4827–4836.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental procedures,
b
spectral data, and biological protocols. This material is available
’ AUTHOR INFORMATION
Corresponding Author
’ ACKNOWLEDGMENT
We gratefully acknowledge the NIH (AI077644) for support
and Prof. Michael Surette (University of Calgary) for providing
the luminescent PAO-JP2 P. aeruginosa strain.
’ REFERENCES
(1) (a) De Kievit, T. R.; Iglewski, B. H. Infect. Immun. 2000,
68, 4839–4849. (b) Fuqua, C.; Greenberg, E. P. Nat. Rev. Mol. Cell.
Biol. 2002, 3, 685–695. (c) Waters, C. M.; Bassler, B. L. Annu. Rev. Cell.
Dev. Biol. 2005, 21, 319–346.
(2) (a) Tang, H. B.; DiMango, E.; Bryan, R.; Gambello, M.; Iglewski,
B. H.; Goldberg, J. B.; Prince, A. Infect. Immun. 1996, 64, 37–43. (b)
Davies, D. G.; Parsek, M. R.; Pearson, J. P.; Iglewski, B. H.; Costerton,
J. W.; Greenberg, E. P. Science 1998, 280, 295–298. (c) Lyczak, J. B.;
Cannon, C. L.; Pier, G. B. Microbes Infection/Institut Pasteur 2000,
2, 1051–1060. (d) Pearson, J. P.; Feldman, M.; Iglewski, B. H.; Prince, A.
Infect. Immun. 2000, 68, 4331–4334. (e) Lyczak, J. B.; Cannon, C. L.;
Pier, G. B. Clin. Microbiol. Rev. 2002, 15, 194–222. (f) Driscoll, J. A.;
Brody, S. L.; Kollef, M. H. Drugs 2007, 67, 351–368.
(3) (a) Pearson, J. P.; Gray, K. M.; Passador, L.; Tucker, K. D.;
Eberhard, A.; Iglewski, B. H.; Greenberg, E. P. Proc. Natl. Acad. Sci. U.S.A.
3842
dx.doi.org/10.1021/ja111138y |J. Am. Chem. Soc. 2011, 133, 3840–3842