Oxidative alkene carbon-carbon bond cleavage reactions,
classically carried out by ozonolysis or with permanganate,
can be performed also catalytically with RuO4/NaOCl, RuO4/
Scheme 1. Formation of [cis-Ru(VI)(dmp)2(O)2]2+ from
[cis-Ru(II)(dmp)2(H2O)2]2+ with Hydrogen Peroxide
-
IO4 or with OsO4/oxone3 and using peroxotungstate com-
plexes with H2O2 under relatively strongly acidic conditions.4
Related cis-dihydroxylation of alkenes, usually performed
5
with OsO4 in the presence of various oxidants, has also been
observed with some Fe, Ru, Mn, and Re complexes.6 The
Os-, Ru-, Mn-, and Re-based complexes seem to have in
common the formation of reactive metal dioxo intermediates
and probably react via 3 + 2 addition of the dioxo species
to the alkene. Carbon-carbon bond cleavage with peroxo-
tungstates appears to occur sequentially: epoxidation, hy-
drolysis to the trans-diol, and oxidation of the vicinal alcohol
by the peroxotungstates.
To the best of our knowledge highly regioselective C-C
bond cleavage of alkenes favoring less nucleophilic double
bonds has never been reported, although such regioselective
epoxidation has been observed in few instances.7
reacted easily with 1-octene to yield n-heptanal. This unusual
reactivity profile of [cis-Ru(VI)(dmp)2(O)2]2+ led us to
explore the catalytic properties of [cis-Ru(II)(dmp)2(H2O)2]2+
with hydrogen peroxide as oxidant. In lieu of a crystal
structure of [cis-Ru(VI)(dmp)2(O)2]2+, a computer-generated
structure via DFT calculation, Figure 1 (see Supporting
About a decade ago Drago and co-workers8 reported on
the oxidation of [cis-Ru(II)(dmp)2(H2O)2]2+ (dmp ) 2,9-
dimethylphenanthroline)9 with hydrogen peroxide to the cis-
ruthenium(VI)dioxo species, [cis-Ru(VI)(dmp)2(O)2]2+, via
the intermediate [cis-Ru(IV)(dmp)2O(H2O)]2+ (Scheme 1).10,11
Our initial studies with [cis-Ru(VI)(dmp)2(O)2]2+ showed
that it reacted very poorly with cyclohexene but surprisingly
(2) (a) McLain, J. L.; Lee, J.; Groves, J. T. In Biomimetic Oxidations
Catalyzed by Transition Metal Complexes; Meunier, B., Ed.; Imperial
College Press: London, 2000; pp 91. (b) Meunier, B. Chem. ReV. 1992,
92, 1411. (c) Brinksma, J.; de Boer, J. W.; Hage, R.; Feringa, B. L. Modern
Oxidation Methods; Ba¨ckvall, J. E., Ed.; Wiley-VCH: Weinheim, Germany,
2004; p 295.
(3) (a) Sica, D. Recent Res. DeV. Org. Chem 2003, 7, 105. (b) Courtney,
J. L. Organic Synthesis and Oxidation with Metal Compounds; Mijs, W.
J., Cornelis, R. H. I., Eds.; Plenum: New York, 1986; p 445. (c) Travis, B.
R.; Narayan, R. S.; Borhan, B. J. Am. Chem. Soc. 2002, 124, 3824-3825.
(4) (a) Antonelli, E.; D’Aloisio, R.; Gambaro, M.; Fiorani, T.; Venurello,
C. J. Org. Chem. 1998, 63, 7190. (b) Haimov, A.; Cohen, H.; Neumann,
R. J. Am. Chem. Soc. 2004, 126, 11762.
(5) (a) Beller, M.; Sharpless, K. B. Applied Homogeneous Catalysis with
Organometallic Compounds, 2nd ed.; Cornils, B., Herrmann, W. A., Eds.;
Wiley-VCH: Weinheim, Germany, 2002; Vol. 3, p 1149. (b) Donohoe, T.
J. Synlettt 2002, 1223. (c) Severeyns, A.; de Vos, D. E.; Jacobs, P. A. Top.
Catal. 2002, 19, 125. (d) Sundermeier, U.; Do¨bler, C.; Beller, M. Modern
Oxidation Methods; Ba¨ckvall, J. E., Ed.; Wiley-VCH: Weinheim, Germany,
2004; p 1.
(6) (a) Brinksma, J.; Schmieder, L.; van Vleit, G.; Boaron, R.; Hage,
R.; de Vos, D. E.; Alsters, P. L.; Feringa, B. L. Tetrahedron Lett. 2002,
43, 2619. (b) de Vos, D. E.; de Wildeman, S.; Sels, B. F.; Grobet, P. J.;
Jacobs, P. A. Angew. Chem., Int. Ed. 1999, 38, 980. (c) Fujita, M.; Costas,
M.; Que, L. J. Am. Chem. Soc. 2003, 125, 9912. (d) Costas, M.; Que, L.
Angew. Chem., Int. Ed. 2002, 41, 2179. (e) Ryu, J. Y.; Kim, J.; Costas, M.;
Chen, K.; Nam, W.; Que, L. Chem. Commun. 2002, 1288. (f) Costas, M.;
Tipton, A. K.; Chen, K.; Jo, D. H.; Que, L. J. Am. Chem. Soc. 2001, 123,
6722. (g) Herrmann, W. A.; Marz, D.; Herdtweck, E.; Scha¨fer, A.; Wagner,
W.; Kneuper, H.-J. Angew. Chem., Int. Ed. Engl. 1987, 26, 462. (h) Shing,
T. K. M.; Tai, V. W.-F.; Tam, E. K. W. Angew. Chem., Int. Ed. Engl.
1994, 33, 2312. (i) Shing, T. K. M.; Tam, E. K. W.; Tai, V. W.-F.; Chung,
I. H. F.; Jiang, Q. Chem. Eur. J. 1996, 2, 50.
Figure 1. CPK representation of the computer-generated structure
of [cis-Ru(VI)(dmp)2(O)2]2+: Ru ) green, N ) blue, C ) black,
O ) red, H ) pink.
Information for computational details), showed that the
methyl substituents on phenanthroline highly masked the
oxygen ligands and lent credibility to a hypothesis that [cis-
Ru(VI)(dmp)2(O)2]2+ may, in fact, be a regioselective
oxidant.
The oxidation of a series of alkenes and dienes with
aqueous hydrogen peroxide catalyzed by [cis-Ru(II)(dmp)2-
(H2O)2]2+ is presented in Table 1.
As may be observed from Table 1, the [cis-Ru(II)(dmp)2-
(H2O)2]2+/H2O2 system is highly regioselective for the
oxidative cleavage of alkenes to aldehydes with a relative
reactivity of 1-octene > 2-methyl-1-heptene . trans-2-
octene . 2-methyl-2-heptene and styrene > â-methylstyrene.
Importantly, this relative reactivity leads to the highly
selective oxidation of 1,4-hexadiene, 7-methyl-1,6-octadiene,
4-vinylcyclohexene, and limonene at the terminal alkene
position. A very unusual phenomenon that was observed was
the reduced reactivity of 4-vinylcyclohexene and limonene
compared to vinylcyclohexane, which is as reactive as
(7) (a) Suslick, K. S.; Cook, B. R. J. Chem. Soc., Chem. Commun. 1987,
200. (b) Ahn, K. H.; Groves, J. T. Bull. Korean Chem. Soc. 1994, 15, 957.
(c) Lai, T.; Lee, S. K.; Yeung, L.; Liu, H.; Williams, I. D.; Chang, C. K.
Chem. Commun. 2003, 620. 7(d) Kamata, K.; Nakagawa, Y.; Yamaguchi,
K.; Mizuno, N. J. Catal. 2004, 224, 224. 7(e) Groves, J. T.; Neumann, R.
J. Am. Chem. Soc. 1987, 109, 5045.
(8) (a) Goldstein, A. S.; Beer, R. H.; Drago, R. S. J. Am. Chem. Soc.
1994, 116, 2424. (b) Goldstein, A. S.; Drago, R. S. J. Chem. Soc., Chem.
Commun. 1991, 218. (c) Bailey, C. L.; Drago, R. S. J. Chem. Soc., Chem.
Commun. 1987, 179.
(10) The [cis-Ru(II)(dmp)2(H2O)2]2+ compound was prepared with a PF6
counteranion.
(11) We were also able to confirm, by ESI-MS, the formation of [cis-
Ru(IV)(dmp)2(O)(Cl)]1+ and then [cis-Ru(VI)(dmp)2(O)2]2+ from the
dichloro precursor [cis-Ru(II)(dmp)2(Cl)2]. Peaks attributable to the mo-
lecular clusters were observed at m/z ) 559 and 550, respectively.
(9) Collin, J. P.; Sauvage, J. P. Inorg. Chem. 1986, 25, 135.
5040
Org. Lett., Vol. 7, No. 22, 2005