Bijvoet in Solution
FULL PAPER
[9] E. Giorgio, M. Roje, K. Tanaka, Z. Hamersak, V. Sunjic, K. Naka-
[10] P. J. Stephens, F. J. Devlin, J. R. Cheeseman, M. J. Frisch, J. Phys.
[11] C. M. Thiele, A. Marx, R. Berger, J. Fischer, M. Biel, A. Giannis,
[12] A. Schuetz, J. Junker, A. Leonov, O. Lange, T. Molinski, C. Grie-
[15] T. Mukaiyama, N. Iwasawa, T. Yura, R. S. J. Clark, Tetrahedron
[17] D. A. Evans, M. T. Bilodeau, T. C. Somers, J. Clardy, D. Cherry, Y.
Experimental Section
General procedure: Oxazolidinone (R)-1 (0.23 g, 1.0 mmol) diluted in
dry dichloromethane (1 mL) was added to a suspension of NbCl5 (0.35 g,
1.3 mmol) in dry dichloromethane (1.0 mL) at 08C. The reaction was vig-
orously stirred for 5 min. Then triethylamine (0.35 mL, 2.5 mmol) was
added dropwise, resulting in a dark brown solution. After stirring for
5 min at 08C, a solution of chalcone 2 (1.1 mmol) in dry dichloromethane
(1.0 mL) was added and the reaction was monitored by TLC. The reac-
tion was stirred for 3 h at 08C and 72 h at room temperature and then sa-
turated ammonium chloride solution (NH4Cl, 10 mL) was added. The re-
action mixture was extracted with CH2Cl2 (3ꢈ15 mL). The organic layers
were washed with brine (10 mL), dried over Na2SO4 and concentrated in
vacuum. Flash chromatography (hexanes/EtOAc=60:40) afforded pure
Michael product (R)-3 in 72% yield as a yellow oil.
MD simulations: To sample the conformational space of this flexible
molecule, we calculated the molecular dynamics trajectory of each diaste-
reomer with the DISCOVER software (Biosym Technologies, San Diego,
CA, USA) using the consistent valence force field (CVFF),[29,30] a stan-
dard force field for small molecules. The MD-simulation was carried out
at 298 K for 1 ns. A single structure was logged every 1 ps so that a tra-
jectory with 1,000 structures was obtained.
[18] D. A. Evans, T. C. Somers, M. T. Bilodeau, F. Urpi, J. S. Clark, J.
[20] C. K. Z. Andrade, Curr. Org. Synth. 2004, 1, 333.
[21] C. K. Z. Andrade, R. O. Rocha, Mini Rev. Org. Synth. 2006, 3, 271.
[22] C. K. Z. Andrade, R. O. Rocha, L. M. Alves, P. P. Kallil, C. M. A.
RDC and ROE analysis: Superimposing each conformer to the mean
structure was performed in the program MOLMOL2.1.[31] The full ROE
and RDC analysis was implemented in the program relax.[32,33]
[24] G. Kummerlçwe, J. Auernheimer, A. Leidlein, B. Luy, J. Am. Chem.
[25] A. Schuetz, T. Murakami, N. Takada, J. Junker, M. Hashimoto, C.
[26] J. A. Nelder, R. Mead, Comp. J. 1965, 7, 308.
[27] B. S. Lou, G. Li, F. D. Lung, V. J. Hruby, J. Org. Chem. 1995, 50,
5509.
ORD analysis: The ten structures of the best ensemble of (R,R,R)-3 and
(R,S,S)-3 were used as starting structures for DFT geometry optimization
using Gaussian03 Revision C.02.[34] The optimizations were performed at
the B3LYP/6–31G(d) level of theory. The optical rotation dispersion cal-
culations at the four wavelengths 436, 546, 578, and 589 nm were per-
formed with the optimized structures as input coordinates with the same
basis set as the optimizations using the integral equation formalism var-
iant polarizable continuum model (IEFPCM) solvent continuum model
as implemented in Gaussian03 with DMSO as the solvent.
Acknowledgements
[32] E. J. dꢀAuvergne, P. R. Gooley, J. Biomol. NMR 2008, 40, 107.
[33] E. J. dꢀAuvergne, P. R. Gooley, J. Biomol. NMR 2008, 40, 121.
[34] Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schle-
gel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgom-
ery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S.
Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani,
N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K.
Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian,
J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E.
Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W.
Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J.
Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C.
Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari,
J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cio-
slowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaro-
mi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng,
A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W.
Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian, Inc., Wall-
ingford CT, 2004.
R.O.R., C.K.Z.A., and L.C.D. thank IQ-UnB, IQ-UNICAMP, CAPES,
CNPq, FINATEC, CT-Infra 0970/01 and C.G. thanks the Max Planck So-
ciety, the Deutsche Forschungsgemeinschaft (GRK 782 and FOR 934)
and the Fonds der Chemischen Industrie for financial support. The au-
thors thank Prof. Michael Reggelin for the ORD measurement and Dr.
Burkhard Luy for providing the PAN gel.
[3] W. Youngsaye, J. T. Lowe, F. Pohlki, P. Ralifo, J. S. Panek, Angew.
[4] E. L. Eliel, S. H. Wilen, Stereochemistry of Organic Compounds,
Wiley, New York, 1994.
[5] L. D. Barron, Molecular Light Scattering and Optical Activity, Cam-
bridge University Press, Cambridge, 2004.
[6] P. L. Polavarapu, Vibrational Spectra: Principles and Applications
with Emphasis on Optical Activity (Studies in Physical and Theoreti-
cal Chemistry, Vol. 85), Elsevier, Amsterdam, 1998.
[7] T. D. Crawford, Theor. Chem. Acc. 2006, 115, 227.
[8] P. J. Stephens, D. M. McCann, J. R. Cheeseman, M. J. Frisch, Chirali-
Received: August 31, 2010
Published online: January 12, 2011
Chem. Eur. J. 2011, 17, 1811 – 1817
ꢆ 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1817