D. Montesarchio et al.
FULL PAPER
(1.0 mL) and the resulting mixture was stirred overnight at 70 °C.
The reaction mixture was concentrated under reduced pressure, dis-
solved in CH2Cl2, transferred into a separatory funnel and washed
three times with water. The organic phase was concentrated under
reduced pressure and purified by column chromatography
(CH2Cl2/CH3OH, 0 to 15%) to give pure cyclic dimer A (21 mg,
0.014 mmol) in 96% yield as an oil. Rf = 0.5 (CH2Cl2/CH3OH,
9:1). 1H NMR (CDCl3, 500 MHz, lithium salt, broadened signals):
δ = 7.33–6.87 (m, 20 H, ArH), 4.97–4.85 (m, 2 H, 1-H and 1Ј-H),
4.55 [br. s, 4 H, 2ϫ (CH2Bn)], 4.10–3.05 [m, 76 H, 16ϫ
(CH2CH2OTEG), 2ϫ (4-H), 2ϫ (6-H2), 2ϫ (5-H), 2ϫ (3-H) and
Supporting Information (see footnote on the first page of this arti-
cle): 31P NMR spectra (CDCl3, 161.98 MHz, 298 K) of macrocycle
A recorded at different concentrations for the determination of the
CAC value.
Acknowledgments
We thank the Italian Ministero dell’Istruzione, dell’Università e
della Ricerca (MIUR) for grants in support of this investigation
(PRIN2008) and Centro di Metodologie Chimico-Fisiche
(CIMCF), Università di Napoli “Federico II” for providing MS
and NMR facilities.
1
2ϫ (2-H)] ppm. H NMR (CD3OD, 500 MHz, lithium salt, sharp
signals): δ = 7.32–6.98 (m, 20 H, ArH), 5.09 (d, J = 7.5 Hz, 2 H,
1-H and 1Ј-H), 4.57–4.50 [m, 4 H, 2ϫ (CH2-Ph)], 4.12–3.91 [m, 14
H, 2ϫ (6-H2), 2ϫ (4-H) and 4ϫ (CH2-CH2-O-sugar)], 3.71–3.46
[m, 56 H, 2ϫ (CH2-O-CH2Ph), (O-CH2-CH2-OTEG), 2ϫ (3-H)
and 2ϫ (5-H)], 3.42–3.33 [m, 6 H, 2ϫ (2-H) and 2ϫ (CH2-
N3)] ppm. 13C NMR (CD3OD, 125 MHz): δ = 156.8, 131.0, 130.1,
129.9, 129.5, 129.4, 124.2, 118.6, 118.3 (ArC), 102.0 (C-1 and C-
1Ј), 84.1, 83.7 (C-5 and C-5Ј), 74.6 [2ϫ (O-CH2-Ph)], 74.0, 73.9
(C-4 and C-4Ј), 72.3, 72.1, 71.6, 71.3, 71.1 (C-2 and C-2Ј, C-3 and
C-3Ј, O-CH2-CH2-OTEG), 69.4 [4ϫ (CH2-CH2-O-sugar)], 68.1 (C-
6 and C-6Ј), 52.3 [2ϫ (O-CH2-N3)] ppm. 31P NMR (CDCl3,
161.98 MHz, 10 mM): δ = ca. –3 (br.) ppm. 31P NMR (CDCl3,
161.98 MHz, 0.2 mM): δ = 0.23 (sharp) ppm. 31P NMR (CD3OD,
[1] G. Di Fabio, A. Randazzo, J. D’Onofrio, C. Ausìn, A. Grandas,
E. Pedroso, L. De Napoli, D. Montesarchio, J. Org. Chem.
2006, 71, 3395–3408.
[2] C. Coppola, V. Saggiomo, G. Di Fabio, L. De Napoli, D. Mon-
tesarchio, J. Org. Chem. 2007, 72, 9679–9689.
[3] S. Licen, C. Coppola, J. D’Onofrio, D. Montesarchio, P. Tec-
illa, Org. Biomol. Chem. 2009, 7, 1060–1063.
[4] C. Coppola, A. Paciello, G. Mangiapia, S. Licen, M. Boccalon,
L. De Napoli, L. Paduano, P. Tecilla, D. Montesarchio, Chem.
Eur. J. 2010, 16, 13757–13772.
[5] S. Braese, C. Gil, K. Knepper, V. Zimmermann, Angew. Chem.
2005, 117, 5320; Angew. Chem. Int. Ed. 2005, 44, 5188–5240.
161.98 MHz, 10 mM): δ = 1.6 (sharp) ppm. ESI-MS (+ve): calcd. [6] Y. G. Gololobov, L. N. Zhmurova, L. F. Kasukhin, Tetrahedron
for C70H104N6O30P2: 1570.62; found: 1594.46 [M + Na+]. HRMS
(MALDI-TOF): calcd. for C70H104N6O30P2Na: 1593.6170; found:
1593.6280.
1981, 37, 437–472.
[7] M. Köhn, R. Breinbauer, Angew. Chem. 2004, 116, 108; Angew.
Chem. Int. Ed. 2004, 43, 3106–3116.
[8] R. Serwa, I. Wilkening, G. del Signore, M. Muehlberg, I.
Claussnitzer, C. Weise, M. Gerrits, C. P. R. Hackenberger, An-
gew. Chem. 2009, 121, 8382; Angew. Chem. Int. Ed. 2009, 48,
8234–8239.
Synthesis of B (Mixture of Regioisomers): CyPLOS A (10 mg,
0.006 mmol, 1 equiv.) was dissolved in anhydrous THF (50 μL).
Triphenylphosphane (4 mg, 0.015 mmol, 2.5 equiv.) was added to
the solution and the reaction was stirred overnight at room tem-
perature. Water (1.0 mL) was added and the resulting system was
stirred for 48 h. The reaction mixture was then treated with dilute
aq. HCl solution and exhaustively washed with diethyl ether to
remove the impurities. The aqueous phase was neutralized and then
extracted with CHCl3/CH3OH (9:1) to furnish the desired, pure
diamino-functionalized CyPLOS (9 mg, 0.006 mmol) as an oil [Rf
= 0.4 (n-butanol/acetic acid/water, 60:15:25)]. This compound
(9 mg, 0.006 mmol, 1 equiv.), previously dried by repeated coevapo-
rations with anhydrous benzene and kept several hours under high
vacuum, was dissolved in anhydrous CH2Cl2 (100 μL). DIPEA
(5 μL, 0.03 mmol, 5 equiv.), DCC (3 mg, 0.015 mmol, 2.5 equiv.),
and TEMPO-carboxylic acid (0.5 mg, 0.003 mmol, 0.5 equiv.) were
sequentially added and the resulting mixture was stirred overnight
at room temperature. The reaction mixture was concentrated under
reduced pressure, diluted with diethyl ether and washed twice with
distilled water. The aqueous phase was concentrated under reduced
pressure, redissolved in H2O and purified on a Sephadex G25 col-
umn (H2O/EtOH, 1:1). From UV measurements, the fractions ab-
sorbing at λ = 264 nm were collected and evaporated to dryness,
yielding target compounds B (7 mg, 0.004 mmol) with 67% yield
as an oil. Rf = 0.4 [n-butanol/acetic acid/water, 60:15:25]. 1H NMR
(CD3OD, 500 MHz, broad, unresolved signals): δ = 7.40–6.90 (m,
20 H, ArH), 5.07 (d, under the HDO signal, 1-H and 1Ј-H), 4.58
[br., 4 H, 2ϫ (CH2-Ph)], 4.06 [m, 8 H, 4ϫ (CH2-CH2-O-sugar)],
3.66–3.16 [m, 62 H, 2ϫ (CH2-O-CH2Ph), 12ϫ (O-CH2-CH2-
OTEG), 2ϫ (3-H), 2ϫ (4-H), 2ϫ (6-H2) and 2ϫ (5-H)], 3.33–3.24
[m, 4 H, 2ϫ (2-H)], 3.02 [br., 4 H, TEG-CH2NH2], 1.98–1.60 [m,
7 H, (CH2 and CH protons of TEMPO)], 1.38–1.05 [m, 12 H, (CH3
of TEMPO)] ppm. ESI-MS (–ve): calcd. for C80H126N3O32P2:
1702.76; found: 850.15 [M – 2H+]2–.
[9] H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. 2001,
113, 2056; Angew. Chem. Int. Ed. 2001, 40, 2004–2021.
[10] V. D. Bock, H. Hiemstra, J. H. van Maarseveen, Eur. J. Org.
Chem. 2006, 51–68.
[11] F. Amblard, J.-H. Cho, R. F. Schinazi, Chem. Rev. 2009, 109,
4207–4220.
[12] For example, see: C. W. Tornœe, C. Christensen, M. Meldal, J.
Org. Chem. 2002, 67, 3057–3064.
[13] G. P. Miller, E. T. Kool, J. Org. Chem. 2004, 69, 2404–2410.
[14] C. Bouillon, A. Meyer, S. Vidal, A. Jochum, Y. Chevolot, J.-P.
Cloarec, J.-P. Praly, J.-J. Vasseur, F. Morvan, J. Org. Chem.
2006, 71, 4700–4702.
[15] J. Liotard, A. Meyer, J.-J. Vasseur, F. Morvan, Tetrahedron
Lett. 2007, 48, 8795–8798.
[16] R. Kumar, A. El-Sagheer, J. Tumpane, P. Lincoln, L. M.
Wilhelmsson, T. Brown, J. Am. Chem. Soc. 2007, 127, 6859–
6864.
[17] M. Alvira, R. Eritja, Chem. Biodiversity 2007, 4, 2798–2809.
[18] A. Kiviniemi, P. Virta, H. Lönnberg, Bioconjugate Chem. 2008,
19, 1726–1734.
[19] A. M. Jawalekar, N. Meeuwenoord, J. G. O. Cremers, H. S. Ov-
erkleeft, G. A. van der Marel, F. P. J. T. Rutjes, F. L. van Delft,
J. Org. Chem. 2008, 73, 287–290.
[20] G. Pourceau, A. Meyer, J.-J. Vasseur, F. Morvan, J. Org. Chem.
2008, 73, 6014–6017.
[21] G. Pourceau, A. Meyer, J.-J. Vasseur, F. Morvan, J. Org. Chem.
2009, 74, 1218–1222.
[22] G. Pourceau, A. Meyer, J.-J. Vasseur, F. Morvan, J. Org. Chem.
2009, 74, 6837–6842.
[23] For a better interpretation of the ESR spectra, a single radical
residue was required in the final spin-labeled macrocycle B.
[24] T. Wada, A. Mochizuki, S. Higashiya, H. Tsuruoka, S. Kawah-
ara, M. Ishikawa, M. Sekine, Tetrahedron Lett. 2001, 42, 9215–
9219.
[25] J. Xue, Z. Guo, Org. Lett. 2004, 6, 1365–1368.
1164
www.eurjoc.org
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2011, 1155–1165