Figure 2. Chiral phosphoric acids.
Figure 1. Examples of optically active β-amino-R,R-difluoro
carbonyl compounds.
type reaction of difluoroenol silyl ethers with aldimines
catalyzed bya chiralphosphoricacidfurnishedβ-amino-R,
R-difluoro carbonyl compounds with high to excellent
enantionselectivities.
Reformatsky reaction of R-bromo-R,R-difluoroacetate with
aldimines,6 and (3) the Mannich-type reaction of difluori-
nated silyl enol ether with aldimines.7 A highly diastereose-
lective Reformatsky reaction was reported and moderate
diastereoselectivity was observed in the Mannich-type reac-
tion. The catalytic enantioselective variant of these processes
leading to β-amino-R,R-difluoro carbonyl compounds, how-
ever, remains elusive.
As part of our ongoing work to develop chiral phos-
phoric acid (Figure 2)8,9 catalyzed reactions, we started a
program to study the chiral phosphoric acid catalyzed
Mannich-type reaction10 of aldimines with difluorinated
enol silyl ethers. This substrate is readily available from a
trifluoroacetophenone derivative.11 We wish to report
herein the first catalytic enantioselective synthesis of β-
amino-R,R-difluoro carbonyl compounds. The Mannich-
At the outset, the effect of the catalyst was investigated
on the reaction of N-tert-butoxycarbonyl (Boc) imines 4a
with difluoroenol silyl ethers 5a, and the results are sum-
marized in Table 1. On treatment of 4a and 5a with (R)-1a
(5 mol %) in toluene at room temperature for 23 h, the
corresponding β-amino-R,R-difluoroketone 6a was ob-
tained in 35% yield with 63% ee (entry 1, Table 1). Wher-
eas the use of catalysts (R)-1b and 1c bearing a bulky
substituent, such as 2,4,6-(iPr)3C6H2 and 9-anthryl groups,
slightly improved the enantioselectivity (entries 2 and 3),
whereas the use of 1d with SiPh3 groups resulted in low
enantioselectivity (entry 4). We found that the chiral
phosphoric acid scaffold affected both yield and ee, and
(6) (a) Vidal, A.; Nefzi, A.; Houghten, R. A. J. Org. Chem. 2001, 66,
8268–8272. (b) Soloshonok, V. A.; Ohkura, H.; Sorochinsky, A.;
Voloshin, N.; Markovsky, A.; Belik, M.; Yamazaki, T. Tetrahedron
Lett. 2002, 43, 5445–5448. (c) Niida, A.; Tomita, K.; Mizumoto, M.;
Tanigaki, H.; Terada, T.; Oishi, S.; Otaka, A.; Inui, K.; Fujii, N. Org.
Lett. 2006, 8, 613–616. (d) Christianson, C. V.; Montavon, T. J.; Festin,
G. M.; Cooke, H. A.; Shen, B.; Bruner, S. D. J. Am. Chem. Soc. 2007,
129, 15744–15745. (e) Oishi, S.; Kamitani, H.; Kodera, Y.; Watanabe,
K.; Kobayashi, K.; Narumi, T.; Tomita, K.; Ohno, H.; Naito, T.;
Kodama, E.; Matsuoka, M.; Fujii, N. Org. Biomol. Chem. 2009, 7,
2872–2877.
Table 1. Effect of Catalyst and Solvent in the Mannich-type
Reaction of N-Boc Imine with Difluoroenol Silyl Ethera
(7) Jonet, S.; Cherouvrier, F.; Brigaud, T.; Portella, C. Eur. J. Org.
Chem. 2005, 4304–4312.
(8) For reviews, see:(a) Akiyama, T.; Itoh, J.; Fuchibe, K. Adv. Synth.
Catal. 2006, 348, 999–1010. (b) Akiyama, T. Chem. Rev. 2007, 107, 5744–
5758. (c) Terada, M. Chem. Commun. 2008, 4097–4112. (d) Terada, M.
Synthesis 2010, 1929–1982. (e) Zamfir, A.; Schenker, S.; Freund, M.;
Tsogoeva, S. B. Org. Biomol. Chem. 2010, 8, 5262–5276.
(9) (a) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem.,
Int. Ed. 2004, 43, 1566–1568. (b) Uraguchi, D.; Terada, M. J. Am. Chem.
Soc. 2004, 126, 5356–5357.
(10) (a) Akiyama, T.; Saitoh, Y.; Morita, H.; Fuchibe, K. Adv. Synth.
Catal. 2005, 347, 1523–1526. (b) Yamanaka, M.; Itoh, J.; Fuchibe, K.;
Akiyama, T. J. Am. Chem. Soc. 2007, 129, 6756–6764. (c) Sickert, M.;
Schneider, C. Angew. Chem., Int. Ed. 2008, 47, 3631–3634. (d) Akiyama,
T.; Honma, Y.; Itoh, J.; Fuchibe, K. Adv. Synth. Catal. 2008, 350, 399–
402. (e) Giera, D. S.; Sickert, M.; Schneider, C. Org. Lett. 2008, 10, 4259–
4262. (f) Itoh, J.; Fuchibe, K.; Akiyama, T. Synthesis 2008, 1319–1322.
(g) Akiyama, T.; Katoh, T.; Mori, K.; Kanno, K. Synlett 2009, 1664–
1666. (h) Giera, D. S.; Sickert, M.; Schneider, C. Synthesis 2009, 3797–
3802. (i) Sickert, M.; Abels, F.; Lang, M.; Sieler, J.; Birkemeyer, C.;
Schneider, C. Chem.-Eur. J. 2010, 16, 2806–2818.
entry
catalyst
(R)-1a
solvent
yield (%)b
ee (%)c
1
Toluene
Toluene
Toluene
Toluene
Toluene
Toluene
Toluene
Toluene
Toluene
Toluene
THF
35
9
63
89
2
(R)-1b
3
(R)-1c
36
11
38
16
24
44
58
60
89
84
4
(R)-1d
29
5
(R)-1e
64
6
(R)-2a
75
7
(R)-2b
93
8
(S)-3
92
9
(S)-3 (10 mol %)
(S)-3 (10 mol %)
(S)-3 (10 mol %)
93
10d
11d
93
94 (>99)e
a Reactions were performed with 4a (0.2 mmol, 1.0 equiv) and 5a (0.3
mmol, 1.5 equiv) in the presence of 5 mol % chiral phosphoric acid in 2
mL of toluene at rt (23 h). b Isolated yields. c Determined by chiral HPLC
analysis. d MS3A (100 wt %) was added. e Values in parentheses are the
ee values after one recrystallization from EtOH.
(11) Amii, H.; Kobayashi, T.; Hatamoto, Y.; Uneyama, K. Chem.
Commun. 1999, 1323–1324.
Org. Lett., Vol. 13, No. 7, 2011
1861