from the corresponding bromochloroflavones without intermedi-
ate purification, save filtration, with no loss of overall yield.
In summary, we have successfully demonstrated the power of
the MEDOS strategy by application to a variety of systematically
modified and functionalised flavones, We anticipate this approach
finding widespread applicability in small molecule synthesis and
the development of small molecules as tools for chemical biology.
We thank BBSRC, EPSRC and CEM for support.
Table 2 Buchwald–Hartwig aminations on bromoflavones
Substrate
Yield (%)
83
Substrate
Yield (%)
42
Notes and references
1 S. L. Schreiber, Science, 2000, 287, 1964–1969.
2 M. S. Schiedel, C. A. Briehn and P. Bauerle, Angew. Chem., Int. Ed.,
2001, 40, 4677–4680.
3 J. P. Tierney and P. Lidstrom, Microwave Assisted Organic Synthesis,
Blackwell, Oxford, 2005.
4 V. M. Malikov and M. P. Yuldashev, Chem. Nat. Compd. (Engl.
Transl.), 2002, 38, 358–406.
5 J. B. Harborne, Nat. Prod. Rep., 1999, 16, 509–523.
6 C. W. Huck, C. G. Huber, K. H. Ongania and G. K. Bonn,
J. Chromatogr., A, 2000, 870, 453–462.
7 M. F. Springsteel, L. J. V. Galietta, T. Ma, K. By, G. O. Berger,
H. Yang, C. W. Dicus, W. Choung, C. Quan and A. A. Shelat, Bioorg.
Med. Chem., 2003, 11, 4113–4120.
64
33a
0
35b
77
8 S. Kuntz, U. Wenzel and H. Daniel, Eur. J. Nutr., 1999, 38, 133–142.
9 L. Cipak, P. Rauko, E. Miadokova, I. Cipakova and L. Novotny, Leuk.
Res., 2003, 27, 65–72.
37c
10 R. J. Griffin, G. Fontana, B. T. Golding, S. Guiard, I. R. Hardcastle,
J. J. J. Leahy, N. Martin, C. Richardson, L. Rigoreau, M. Stockley and
G. C. M. Smith, J. Med. Chem., 2005, 48, 569–585.
11 C. J. Bennett, S. T. Caldwell, D. B. McPhail, P. C. Morrice, G. G. Duthie
and R. C. Hartley, Bioorg. Med. Chem., 2004, 12, 2079–2098.
12 Z. Chen, Y. Hu, H. Wu and H. Jiang, Bioorg. Med. Chem. Lett., 2004,
14, 3949–3952.
0b
57c
13 S. Caddick, F. W. Muskett, R. G. Stoneman and D. N. Woolfson,
J. Am. Chem. Soc., 2006, 128, 4204–4205.
14 S. K. Ko, H. J. Jang, E. Kim and S. B. Park, Chem. Commun., 2006,
2962–2964.
15 E. E. Wyatt, S. Fergus, W. Galloway, A. Bender, D. J. Fox,
A. T. Plowright, A. S. Jessiman, M. Welch and D. R. Spring, Chem.
Commun., 2006, 3296–3298.
a
b
Pd(OAc)2 instead of Pd2(dba)3. 2 eq. amine, 3 mol% Pd2(dba)3,
c
4.5 mol% BINAP, 1.4 eq. Cs2CO3. 1 eq. n-hexylamine, 80 uC
(MW), 1 h.
16 T. T. Dao, S. B. Kim, K. S. Sin, S. Kim, H. P. Kim and H. Park, Arch.
Pharmacal Res., 2004, 27, 278–282.
17 M. Pal, K. Parasuraman, V. Subramanian, R. Dakarapu and
K. R. Yeleswarapu, Tetrahedron Lett., 2004, 45, 2305–2309.
18 M. Pal, V. Subramanian, K. Parasuraman and K. R. Yeleswarapu,
Tetrahedron, 2003, 59, 9563–9570.
19 B. L. Deng, J. A. Lepoivre and G. Lemiere, Eur. J. Org. Chem., 1999,
2683–2688.
20 M. Pal, R. Dakarapu, K. Parasuraman, V. Subramanian and
K. R. Yeleswarapu, J. Org. Chem., 2005, 70, 7179–7187.
21 Y. H. Joo, J. K. Kim, S. H. Kang, M. S. Noh, J. Y. Ha, J. K. Choi,
K. M. Lim, C. H. Lee and S. Chung, Bioorg. Med. Chem. Lett., 2003,
13, 413–417.
22 J. J. Ares, P. E. Outt, S. V. Kakodkar, R. C. Buss and J. C. Geiger,
J. Org. Chem., 1993, 58, 7903–7905.
23 M. Cushman and D. Nagarathnam, Tetrahedron Lett., 1990, 31,
6497–6500.
Scheme 4 Arylation of chloroflavones.
24 M. Marder, J. Zinczuk, M. I. Colombo, C. Wasowski, H. Viola,
C. Wolfman, J. H. Medina, E. A. Ruveda and A. C. Paladini, Bioorg.
Med. Chem. Lett., 1997, 7, 2003–2008.
25 W. J. Baker, J. Chem. Soc., 1933, 1381.
26 G. W. Kabalka and A. R. Mereddy, Tetrahedron Lett., 2005, 46,
6315–6317.
27 A. Bengtson, A. Hallberg and M. Larhed, Org. Lett., 2002, 4,
1231–1233.
28 G. Y. Li, G. Zheng and A. F. Noonan, J. Org. Chem., 2001, 66,
8677–8681.
catalyst regime, with a small amount of bis amination
observed, 7%, in the case of 10. Yields for this mono
amination of bromochloroflavone 9 and 10 compared well
with the analogous reactions on monobrominated substrates
2 and 6. The use of Pd(OAc)2 as palladium source furnished
the desired hydrolytically unstable aminated flavone without
further purification in the case of bromoflavone 4.
Arylation of chloroflavones 14 and 16 with POPd–CsF at 120 uC
(MW) afforded the desired products 15 and 17 in moderate yields.
Aminated arylated flavones 15 and 17 can be generated directly
29 A. C. Hillier, G. A. Grasa, M. S. Viciu, H. M. Lee, C. L. Yang and
S. P. Nolan, J. Organomet. Chem., 2002, 653, 69–82.
30 J. P. Wolfe and S. L. Buchwald, J. Org. Chem., 2000, 65, 1144–1157.
4816 | Chem. Commun., 2006, 4814–4816
This journal is ß The Royal Society of Chemistry 2006