INDOLE BASED BIS-LIGAND
79
4. Ahmed, S.M.; Ismali, D.A. Synthesis and Biological Activity of 8-
Hydroxyquinoline and 2-Hydroxy Pyridine Qurternary Ammonium Salts.
J.Surfact. Deterg. 2008, 11(3), 231–235.
5. Kharadi, G.J.; Patel, K.D. Antibacterial, Spectral and Thermal, Aspects of
Drug Based Cu(II) Mixed Ligand Complexes. Appl. Organometal. Chem.
2009, 23(10), 391–397.
6. Kharadi, G.J.; Panchani, S.C.; Patel, K.D. Studies on Some Coordination
Polymeric Chains of Metal Ions With QMIN. Internat. J. Poly. Materi.
2010, 59, 577–587.
7. Kharadi, G.J.; Patel, K.D. Syntesis, Spectroscopic, Thermal and Biological
Aspects of Mixed Ligand Copper(II) Complexes. J. Therm. Anal. Calorim.
2009, 96(3), 1019–1028.
8. Kharadi, G.J.; Patel, K.D. In-Vitro Antimicrobial, Thermal and Spectral
Studies of Mixed Ligand Cu(II) Heterochelates of Cliquinol and Coumarin
Derivaties. Appl. Organometal. Chem. 2010, 24, 332–337.
9. Patel, H.S.; Patel, D.J. Coordination Polymers Based on Bis-Ligand Con-
taining Indole and 8-Hydroxyquinoline Moieties. Internat. J. Poly. Materi.
2010, 59, 307–317.
10. Pohl, R.; Montes, V.; Shinar, A.J., Jr.; Anzenbacher, P. Red-Green-Blue
Emission From Tris(5-Aryl-8-Quinolate)Al(III) Complexes. J. Org. Chem.
2004, 69, 1723–1725.
FIG. 7. Comparative analysis for antimicrobial activity of the bis-ligand and
coordination polymers; L = ligand.
11. Patel, R.D.; Patel, S.R.; Patel, H.S. Co-Ordination Polymers of Bis(8-
Hydroxy-5-Quinolylmethylene)Sulphide (BHQS). Eur. Polym. J. 1987,
23(3), 229–232.
12. Shah, T.B.; Patel, H.S.; Dixit, R.B.; Dixit B.C. Coordination Polymers
of 1,8-Bis (8-Hydroxyquinolin-5-yl)-2,7-Dioxaoctane. Int. J. Polym. Anal.
Charact. 2003, 8, 369–381.
13. Xian Ren, C.; Yuqi, F.; Hisanori, I.; Kazuhisa, H.; Kousaburo, O. Selective
Preconcentration and Separation of a Trace Amount of Copper(II) with
Poly(N-(8-Hydroxy-5-Quinolylmethyl)- 4-Amino Methylstyrene) Resin.
Analyt.Sci. 1995, 11, 313–315.
14. Abraham, W.; Abraham, D.; Guy, R.; Abraham, P. Functionalization of
Polystyrene II Synthesis of Chelating Polymers by Alkylation of 4-Amino
Methyl Polystyrene. Reactive Polymers, Ion Exchangers, Sorbents, 1984,
2(4), 301–314.
on the basis of Overtone’s concept, Tweedy’s chelation theory,
and the partial sharing of the positive charge of metal ions
with donor groups.[38−40] This may support the argument that
some type of biomolecular binding to the metal ions or in-
terchelation or electrostatic interactions causes the inhibition of
biological synthesis and thus preventing the reproduction of or-
ganisms. The enhanced biological activity and lower toxicity of
the transition metal polymers compared to the biological active
bis-ligand make them useful in medicine and other biological
applications.[41] So it can be concluded that complex exhibit
higher antimicrobial activity than the free ligand.[42]
15. Pande, A.; Agarwal, S.; Saxena, V.K.; Khan, M.M.A.A.; Chowdhary, B.L.
Synthesis and Antiviral Activity of Some New Indole Derivatives. Ind. J.
Pharma. Science, 1987, 49(3), 85–88.
CONCLUSION
16. Gurkok, G.; Altanlaz, N.; Suzan, S. Investigation of Antimicrobial Activi-
ties of Indole-3-Aldehyde Hydrazide/ Hydrazone Derivaties. Int. J. Exper.
Clinical. Chem. 2009, 55, 15–19.
17. Feng, L.; Wang, X.; Chen, Z. Synthesis and Photophysics Os Novel 8-
Hydroxyquinoline Aluminium Metal Complexes With Flourene Unit. Spec-
trochimica Acta. Part A. 2006, 68(3), 646–650.
18. Rajitha, B.; Reddy, Y.T.; Reddy, P.N.; Kumar, B.S. Efficient Synthesis of
Bis(Indolyl)Methanes Catalyzed By TiCl4. Indian J. Chem. 2005, 44B,
2393–2395.
The present article describes a novel bis-ligand having in-
dole and 8-hydroxyquinoline moieties. The bis-ligand (NIMQ)
affords coordination polymers with metal ions. The coordina-
tion polymers are more thermally stable than ligand. All the
coordination polymers have good antimicrobial activity relative
to the ligand due to the insertion of metal ions.
19. Moghaddam, F.M.; Bardajee, G.R.; Ismaili, H. Synthesis of
Bis(Indolyl)Methanes in Presence of Anhydrous Copper(II) Sulfate. Asian
J. Chem. 2008, 20(2), 1063–1067.
20. Vogel, A.I. A Text book of Quantitative Inorganic Analysis, fourth ed., ELBS
and Longman, London, 1978.
SUPPLEMENTARY DATA
Figure 1 and Figure 2 for FTIR of ligand. For coordination
polymers, see the supplementary data. The thermogram of lig-
and and its coordination polymers are shown in Figure 5 in
supplementary data.
21. Figgis, B.N.; Lewis, J. The Magnetochemistry of Complexes in Modern
Coordination Chemistry, Interscience, New York, 1960.
22. Stanier, R.Y. Introduction to the Microbial World, fifth ed., Prentice Hall
Inc., Englewood Cliffs, NJ, 1986.
REFERENCES
1. Purohit, R.; Devi, S. Separation and Determination of Trace Amonts of Zinc
and Cadmium by On-Line Enrichment in Flow Injection Flame Atomic
Adsorption Spectrometry. Analyst Sci. 1991, 116, 825–830.
2. Manolova, N.; Ignatova, M.; Rashkov, I. Preparation and Metal Ion Com-
plexing Ability of Polyethers with 8-Hydroxy-5-Quinolinyl End Groups.
Eur. Polym. J.,1998, 34(8), 1133–1141.
23. Nakamoto, N. Infrared Spectra and Raman Spectra of Inorganic and Co-
ordination Compounds, John Wiley and Sons, New York, 1978.
24. Jani, D.H.; Patel, H.S.; Keharia, H.; Modi, C.K. Novel Drug Based-
Fe(III) Heterochelates: Synthesis, Spectroscopic, Thermal and In-Vitro
Antibacterial Significance. Appl. Orgmetal. Chem. 2010, 24, 99–
111.
3. Ding, W.Q.; Liu, B.; Vaught, J.L.; Yamauchi, H.; Ling, S.E. Anticancer
Activity of the Antibiotic Clioquinol. Cancer Res. 2005, 65, 3389–3395.
25. Patel, S.H.; Parekh, H.M.; Panchal, P.K.; Patel, M.N. Polymeric Coordi-
nation Compounds Derived From Transition Metal(II) with Tetradentate