10.1002/cctc.201601687
ChemCatChem
FULL PAPER
The number of acid sites present in the zeolites was measured by NH3
temperature-programmed desorption (TPD) using an AutoChem II 2920
pore analyzer, wherein the ammonia desorption was determined every
547-597; c) X. Zhang, K. Wilson, A. F. Lee, Chem. Rev. 2016, 116, 12328-
12368; d) R. Mariscal, P. Maireles-Torres, M. Ojeda, I. Sádaba, M. L.
Granados, Energy Environ. Sci. 2016, 9, 1144-1189; e) B. Liu, Z. Zhang,
ChemSusChem 2016, 9, 2015-2036; f) H. Li, J. He, A. Riisager, S.
Saravanamurugan, B. Song, S. Yang, ACS Catal. 2016, 6, 7722-7727.
[3] a) A. Morone, M. Apte, R. A. Pandey, Renew. Sustain. Energy Rev. 2015,
51, 548-565; b) H. Li, P. S. Bhadury, A. Riisager, S. Yang, Catal. Sci.
Techn. 2014, 4, 4138-4168; c) Y. Qian, L. Zhu, Y. Wang, X. Lu, Renew.
Sustain. Energy Rev. 2015, 41, 633-646; d) H. Li, Z. Fang, S. Yang, ACS
Sustain. Chem. Eng. 2015, 4, 236-246; e) Z. Zhang, K. Deng, ACS Catal.
2015, 5, 6529-6544; f) H. Li, Z. Fang, S. Yang, ChemPlusChem 2016, 81,
135-142. g) X. Li, B. Ho, Y. Zhang, Green Chem. 2016, 18, 2976-2980; h)
H. Li, S. Saravanamurugan, S. Yang, A. Riisager, Green Chem. 2016, 18,
726-734.
second from 100-600 ºC with
a heating ramp of 10 ºC/min.
Thermogravimetric (TG) analysis was conducted by use of
a
NETZSCHSTA 429 instrument under N2 atmosphere (30 mL/L) in the
temperature range of 25-600 °C with a constant heating rate of 10 °C/min.
Nitrogen sorption measurements were performed at liquid nitrogen
temperature on a Micromeritics ASAP 2020 instrument. FT-IR spectra of
pyridine adsorbed to zeolites were measured with TPD 250 ºC for 30 min
with a heating ramp of 5 ºC/min using a Bruker VERTEX V70v system.
Before desorption of pyridine in the sample cell, the degassed mixture
was heated at 100 ºC to remove physisorbed pyridine.
[4] a) M. Chatterjee, T. Ishizaka, H. Kawanami, Green Chem. 2016, 18, 487-
496; b) J. J. Roylance, K. S. Choi, Green Chem. 2016, 18, 5412-5417; c) J.
J. Martínez, E. Nope, H. Rojas, M. H. Brijaldo, F. Passos, G. Romanelli, J.
Mol. Catal. A: Chem. 2014, 392, 235-240; d) Q. Yao, L. Xu, Z. Han, Y.
Zhang, Chem. Eng. J. 2015, 280, 74-81; e) S. Sowmiah, L. F. Veiros, J. M.
S. S. Esperança, L. P. N. Rebelo, C. A. M. Afonso, Org. Lett. 2015, 17,
5244-5247; f) P. Kumar, R. S. Reddy, A. P. Singh, B. Pandey, Tetrahedron
Lett. 1992, 33, 825-826.
Reaction procedure
All catalytic batch experiments were performed in an Ace pressure tube
at room temperature under vigorously stirring. All reagents were obtained
from J&K Scientific Ltd. (Beijing) in analytical gradeand used as received.
In a general procedure, 50 mg H-beta(19), 1 mmol furfural and 2.2 mmol
ethyl 2-mercaptoacetate were added into the tube and mixed. After a
specific reaction time, the mixture was quenched and extracted with
dichloromethane. 1H and 13C NMR (nuclear magnetic resonance) spectra
of the isolated furfural dithioacetal are shown in Figure S7, which were
recorded on a JEOL-ECX 500 NMR spectrometer at room temperature.
Liquid products were identified by GC-MS (Agilent 6850 GC system
coupled with an Agilent 5975C mass detector; Figure S8), and
quantitatively analyzed by GC (Agilent 6890N instrument, HP-5 capillary
column 30.0 m × 320 μm × 0.25 μm).
[5] a) W. W. Wood, Organosulfur Chem. 1995, 1, 133-224; b) A. Krause, S.
Neitz, H. J. Magert, A. Schulz, W. G. Forssmann, P. Schulz-Knappe, K.
Adermann, FEBS Lett. 2000, 480, 147-150; c) L. Z. Xu, F. L. Xu, K. Li, Q.
Lin, K. Zhou, Chin. J. Chem. 2005, 23, 1421-1424.
[6] a) M. E. Mahmoud, G. A. Gohar, Talanta 2000, 51, 77-87; b) S. P. Bayen,
P. Chowdhury, J. Environ. Chem. Eng. 2015, 3, 70-78.
[7] a) A. Abbaspour, M. A. Kamyabi, Anal. Chim. Acta 2002, 455, 225-231; b)
K. R. Bandi, A. K. Singh, A. Upadhyay, Mater. Sci. Eng. C2014, 34, 149-
157.
To monitor the reaction process, a certain amount of the reaction solution
was directly taken out, diluted with methanol, and subjected to UV-Vis
analysis. From the first to fifth run, the H-beta(19) catalyst was separated
by centrifugation, washed with dichloromethane and methanol three
times, and dried at 80 ºC overnight. The recovered catalyst was directly
used for the next cycle under identical reaction conditions. After reuse in
five consecutive reaction cycles, the H-beta(19) catalyst was regenerated
by calcination at 550 ºC for 3 h to remove deposited carbon residues.
[8] a) T. Y. Luh, Acc. Chem. Res. 1991, 24, 257-263; b) T. Y. Luh, J.
Organometal. Chem. 2002, 653, 209-214; c) L. Pan, X. Bi, Q. Liu, Chem.
Soc. Rev. 2013, 42, 1251-1286.
[9] a) G. Oksdath-Mansilla, V. Hajj, D. M. Andrada, J. E. Argüello, J. Bonin, M.
Robert, A. B. Peñéñory, J. Org. Chem. 2015, 80, 2733-2739; b) F. Fahid,
S. A. Pourmousavi, J. Sulfur. Chem. 2015, 36, 16-29.
[10] D. R. Dreyer, H. P. Jia, A. D. Todd, J. Geng, C. W. Bielawski, Org. Biomol.
Chem. 2011, 9, 7292-7295.
[11] R. A. Laskar, N. A. Begum, M. H. Mir, M. R. Rohman, A. T. Khan,
Tetrahedron Lett. 2013, 54, 5839-5844.
[12] B. Roy, D. Sengupta, B. Basu, Tetrahedron Lett. 2014, 55, 6596-6600.
[13] a) A. P. Rauter, N. M. Xavier, S. D. Lucas, M. Santos, Adv. Carbohydr.
Chem. Biochem. 2010, 63, 29-99; b) R. Zhang, N. Liu, Z. Lei, B. Chen,
Chem. Rev. 2016, 116, 3658-3721; c) M. S. Holm, S. Saravanamurugan,
E. Taarning, Science 2010, 328, 602-605; d) S. Saravanamurugan, M.
Paniagua, J.A. Melero, A. Riisager, J. Am. Chem. Soc. 2013, 135, 5246-
5249.
Acknowledgements
HL, TTY and SY wish to acknowledge the financial support from
the National Natural Science Foundation of China (21576059,
21666008) and the Key Technologies R&D Program of China
(2014BAD23B01). SS thanks the Department of Biotechnology
(Government of India), New Delhi, India for support.
[14] a) J. M. Rubio-Caballero, S. Saravanamurugan, P. Maireles-Torres, A.
Riisager, Catal. Today 2014, 234, 233-236; b) T. Ennaert, J. Van Aelst, J.
Dijkmans, R. De Clercq, W. Schutyser, M. Dusselier, D. Verboekend, B.
F. Sels, Chem. Soc. Rev. 2016, 45, 584-611; c) H. Li, S. Yang, A.
Riisager, A. Pandey, R. S. Sangwan, S. Saravanamurugan, R. Luque,
Green Chem. 2016, 18, 5701-5735.
Keywords: zeolites • biomass • dithioacetal • value-added
chemicals • heterogeneous catalysis
[15] a) X. Li, P. Jia, T. Wang, ACS Catal. 2016, 6, 7621-7640; b) R. Mariscal,
P. Mairelestorres, M. Ojeda,I. Sádaba, M. L. Granados, Energy Environ.
Sci. 2016, 9, 1144-1189.
[1]a) A. Corma, S. Iborra, A. Velty, Chem. Rev. 2007, 107, 2411-2502; b)
R.Sahu, P. L. Dhepe, ChemSusChem 2012,5, 751-761; c) A. M. da Costa
Lopes, R. Bogel-Łukasik, ChemSusChem 2015,8, 947-965; d) M. H. L.
Silveira, A. R. C. Morais, A. M. da Costa Lopes, D. N. Olekszyszen, R.
Bogel-Łukasik, J. Andreaus, L. Pereira-Ramos, ChemSusChem 2015, 8,
3366-3390; e) H. Li, Z. Fang, R. L. Smith, S. Yang, Prog. Energ. Combust.
2016, 55, 98-194; f) L. Shuai, J. Luterbacher, ChemSusChem 2016, 9,
133-155; g) Z. Zhang, ChemSusChem 2016, 9, 156-171.
[16] J. Jae, G. A. Tompsett, A. J. Foster, K. D. Hammond, S. M. Auerbach, R.
F. Lobo, G. W. Huber, J. Catal. 2011, 279, 257-268.
[17] J. Van Aelst, D. Verboekend, A. Philippaerts, N. Nuttens, M. Kurttepeli, E.
Gobechiya, M. Haouas, S. P. Sree, J. F. M. Denayer, J. A. Martens, C. E.
A. Kirschhock, F. Taulelle, S. Bals, G. V. Baron, P. A. Jacobs, B. F.Sels,
Adv. Funct. Mater. 2015, 25, 7130-7144.
[2] a) R.Karinen, K. Vilonen, M.Niemelä, ChemSusChem 2011, 4, 1002-1016;
b) H. Li, Q. Zhang, P. S. Bhadury, S. Yang, Curr. Org. Chem. 2014, 18,
This article is protected by copyright. All rights reserved.