SCHEME 1
Nickel-Catalyzed Cyclization of 2-Iodoanilines
with Aroylalkynes: An Efficient Route for
Quinoline Derivatives
Rajendra Prasad Korivi and Chien-Hong Cheng*
crucial problem is the poor regioselectivity that often leads to
isomers. Other methods generally require the use of strong acids,
high temperature, and tedious reaction procedures and suffer
from poor selectivity. Recently, several reports of transition
metal-catalyzed synthesis of quinolines have appeared.5 These
included rhodium-catalyzed5b,c cyclization of anilines with
styrenes and cyclization of trifluoroacetimidoyl chloride with
alkynes and also the intramolecular cyclization of alkynyl imines
catalyzed by tungsten carbonyl.5d In most of these cases, the
regioselectivity and the scope of functionality on the quinolines
are limited.
Department of Chemistry, National Tsing Hua UniVersity,
Hsinchu 30013, Taiwan
ReceiVed April 15, 2006
Our interests in developing new synthetic strategies using
nickel catalysts6,7 recently made possible the development of
an efficient route for the preparation of isoquinolines and
pyridines by the reaction of 2-iodobenzaldimines and 3-iodo-
3-phenylacrylaldimines with alkynes, respectively. Herein, we
wish to report a new convenient nickel-catalyzed synthesis of
2,4-disubstituted quinolines using the easily available 2-iodo-
anilines and 1-benzoylalkynes8 as the starting materials under
neutral conditions. The method for 2,4-disubstituted quinolines
is important as most of the available methods are for the
preparation of 2,3-disubstituted quinolines.
When 2-iodoaniline (1a) was treated with 1-benzoylethyne
(2a) in the presence of NiBr2(dppe) and zinc metal powder in
acetonitrile, Michael addition-deiodination product 3 was ob-
tained in 68% yield (Scheme 1). No expected quinoline was
observed in this case. Fortunately, the use of internal alkyne,
1-benzoyl phenyl acetylene (2b), with 1a in the presence of
NiBr2(dppe) and zinc metal powder in acetonitrile at 80 °C for
12 h gave the corresponding 2,4-diphenylquinoline (4a) in 56%
yield (Table 1). Control experiments showed that in the absence
of either nickel catalyst or zinc metal, no quinoline 4a was
observed.
An efficient and convenient nickel-catalyzed cyclization of
2-iodoanilines with alkynyl aryl ketones to give 2,4-disub-
stituted quinolines was developed. The reaction can be
employed for the synthesis of naturally occurring quinoline
derivatives in good yields. On the basis of the regiochemistry
of the products, the possible pathway for the reaction is via
the formation of o-aminochalcone.
Quinolines are widely occurring natural alkaloids known to
display a wide variety of pharmacological properties such as
anesthetic, tumorcidal, angina pectoris, antihypertensive, and
antibacterial activities and also act as insecticidal agents.1 In
addition, these compounds are well-known ligands for the
preparation of OLED phosphorescent complexes.2 Development
of new synthetic methods for quinoline derivatives are in great
demand because of the rise of the resistance level of malarial
parasite in the use of Chloroquine, a widely used malarial drug.1a
There are several synthetic methods3,1a available for the prepara-
tion of quinolines. The most popular method is the two-step
Friedlander synthesis4 based on Aldol condensation of unstable
2-aminobenzaldehydes generated in situ by reduction of 2-ni-
trobezaldehydes with ketones. This method is seriously limited
by the availability of 2-nitrobenzaldehyde derivatives. Another
(4) (a) Friedlander, P. Chem. Ber. 1882, 15, 2572. (b) Cho, C. S.; Kim,
B. T.; Kim, T. J.; Shim, S. C. Chem. Commun. 2001, 2576. (c) Hsiao, Y.;
Rivera, N. R.; Yasuda, N.; Hughes, D. L.; Reider, R. J. Org. Lett. 2001, 3,
1101. (d) Dormer, P. G.; Eng, K. K.; Farr, R. N.; Humphrey, G. R.;
McWilliams, J. C.; Reider, P. J.; Sager, J. W.; Volante, R. P. J. Org. Chem.
2003, 68, 467. (e) Miller, B. L.; Mcnaughton, B. R. Org. Lett. 2003, 5,
4257. (f) Hu, Y.-Z.; Zhang, G.; Thummel, R. P. Org. Lett. 2003, 5, 2251.
(5) (a) Takahashi, T.; Li, Y.; Stepnicka, P.; Kitamura, M.; Liu, Y.;
Nakajima, K.; Kotora, M. J. Am. Chem. Soc. 2002, 124, 576. (b) Beller,
M.; Thiel, O. R.; Trauthwein, H.; Hartung, C. G. Chem.sEur. J. 2000, 6,
2513. (c) Amii, H.; Kishikawa, Y.; Uneyama, K. Org. Lett. 2001, 3, 1109.
(d) Sangu, K.; Fuchibe, K.; Akiyama, T. Org. Lett. 2004, 6, 353.
(6) (a) Korivi, R. P.; Cheng, C, H. Org. Lett. 2005, 7, 5179. (b)
Jeevanandam, A.; Korivi, R. P.; Cheng, C, H. Org. Lett. 2002, 4, 807. (c)
Rayabarapu, D. K.; Sambiah, T.; Cheng, C, H. Angew. Chem., Int. Ed. 2001,
40, 1286.
(1) (a) Claret, P. A.; Osborne, A. G. In The Chemistry of Heterocyclic
Compounds; Quinolines; Jones, G., Ed.; John Wiley Sons: U.K., 1982;
Vol. 32, Part 2, pp 31-32. (b) Sawada, Y.; Kayakiri, H.; Abe, Y.; Imai,
K.; Katayama, A.; Oku, T.; Tanaka, H. J. Med. Chem. 2004, 47, 1617. (c)
Groisy-Delcey, M.; Groisy, A.; Carrez, D.; Huel, C.; Chaironi, A.; Ducrot,
P.; Bisagni, E.; Jin, L.; Leclercq, G. Bioorg. Med. Chem. 2000, 8, 2629.
(d) Strekowski, L.; Say, M.; Henary, M.; Ruiz, P.; Manzel, L.; Macfarlane,
D, E.; Bojarski, A. J. J. Med. Chem. 2003, 46, 1242.
(2) (a) Cheng, C. H.; Chen, R. M.; Huang, C. W.; Yang, C. C. U.S.
Patent 20050025995A1, 2005. (b) Thompson, M. E.; Ma, B.; Djurovich,
P. U.S. Patent 20050164031A1, 2005. (c) Adamovich, V.; Weaves, M.;
Brown, J. U.S. Patent 20050168137A1, 2005. (d) Knowles, D. B.; Kwong,
R. U.S. Patent 20050164030A1, 2005. (e) Kim, J. L.; Shin, I. S.; Kim, H.
J. Am. Chem. Soc. 2005, 127, 1614.
(7) (a) Rayabarapu, D. K.; Yang, C, H.; Cheng, C. H. J. Org. Chem.
2003, 17, 6726. (b) Rayabarapu, D. K.; Cheng, C. H. Chem. Commun. 2002,
942.
(3) (a) Luo, Z. Y.; Zhang, Q. S.; Oderaotoshi, Y.; Curran, D. P. Science
2001, 291, 1766. (b) Skarup, Z. H. Chem. Ber. 1880, 13, 2086. (c) Baker,
R. H.; Tinsley, S. W., Jr.; Butler, D.; Riegel, B. J. Am. Chem. Soc. 1950,
72, 393. (d) Bischler, A.; Napieralski, B. Chem. Ber. 1893, 26, 1903. (e)
Fodor, G.; Nagubandi, S. Tetrahedron 1980, 36, 1279. (f) Meth-Cohn, O.;
Stanforth, S. P.; ComprehensiVe Organic Synthesis; Heathcock, C. H., Ed.;
Pergamon Press: New York, 1991; Vol. 2, 777.
(8) Various 1-benzoylalkynes R3CCC(O)R2 were prepared from R3CCLi
(from R3CCH and n-BuLi) and R2C(O)Cl in THF at -78 °C or (a) Chen,
L.; Li, C. J. Org. Lett. 2004, 6, 3151. (b) Lee, P. H.; Lee, S. W.; Seomoon,
D. Org. Lett. 2003, 5, 4963. 2-Iodoaniline derivatives were prepared from
I2, the corresponding aniline and NaHCO3. (c) Xiao, W.-J.; Alper, H. J.
Org. Chem. 1999, 64, 9646. (d) Dains, F. B.; Vaughan, T. H.; Janney, W.
M. J. Am. Chem. Soc. 1918, 40, 932.
10.1021/jo060800d CCC: $33.50 © 2006 American Chemical Society
Published on Web 07/29/2006
J. Org. Chem. 2006, 71, 7079-7082
7079