Organic Process Research & Development
TECHNICAL NOTE
2H), 7.51-7.36 (m, 2H), 4.37 (dqd, J = 11.8, 6.2 and 3.0, 1H),
1.88 (dd, J = 13.9 and 3.0, 1H), 1.65 (dd, J = 13.9 and 11.8, 1H),
1.39 (s, 3H), 1.35 (s, 3H), 1.32 (d, J = 6.2, 3H). 13C NMR δ 133.6
(CH), 133.0 (q, 2J = 31.0, Cq), 130.8 (CH), 129.0 (CH), 125.4
(q, 3J = 4.8, CH), 124.9 (q, 1J = 273.5, Cq), 72.0 (Cq), 65.9 (CH),
46.0 (CH2), 31.1 (CH3), 27.9 (CH3), 23.1 (CH3). 11B NMR δ
27.8. 19F NMR δ -59.2. LRMS (EI) m/z: 172.1 (28), 173.1
(100), 174.1 (8), 271.2 (3), 272.2 (9), 273.2 (1).
’ AUTHOR INFORMATION
Corresponding Author
Telephone: (þ)33 476635796. Fax: (þ)33 476635983. E-mail:
’ ACKNOWLEDGMENT
We are grateful to Universitꢀe Joseph Fourier and the CNRS
for financial support. We thank Laure Jullien, Rodolphe Guꢀeret,
and Dr. Bernard Brasme for Mass Spectrometry analysis and Dr.
Jean-Franc-ois Poisson, DCM, for fruitful discussion.
2-Bromo-6-(4,4,6-trimethyl-1,3,2-dioxaborinan-2-yl)pyridine
3j. 3j was prepared according to general procedure starting from
6-iodo-2-bromopyridine (284 mg, 1 mmol): yellow oil (260 mg,
92%). IR: 3044 (CH ar.), 2973 (CH3), 1575 and 1548 (CdC
1
ar.), 1403 (B-C), 1299 (B-O asym.), 1164 (B-O sym.). H
NMR δ 8.58 (d, J = 1.7, 1H), 7.80 (dd, J = 7.9 and 1.7, 1H), 7.35
(d, J = 7.9, 1H), 4.28 (dqd, J = 10.8, 6.2 and 3.0, 1H), 1.82 (dd, J =
14.4 and 3.0, 1H), 1.53 (dd, J = 14.4 and 10.8, 1H), 1.31 (s, 3H),
1.30 (s, 3H), 1.27 (d, J = 6.2, 3H). 13C NMR δ 155.5 (CH), 144.5
(Cq), 143.9 (CH), 127.3 (CH), 71.8 (Cq), 65.5 (CH), 46.0
(CH2), 31.2 (CH3), 28.2 (CH3), 23.1 (CH3). 11B NMR δ 26.4.
LRMS (EI) m/z: 282.0 (25), 283.0 (100), 284.0 (25), 285.0
(92), 286.0 (15).
’ REFERENCES
(1) Hall, D. G., Ed. Boronic Acids: Preparation and Applications in
Organic Synthesis and Medicine; Wiley-VCH Verlag GmbH: Weinheim,
2005.
(2) Borylationofareneswithpinacolboraneorbis(pinacolato)diboron:
(a) Chen, H.; Schlecht, S.; Semple, T. C.; Hartwig, J. F. Science 2000,
287, 1995–1997. (b) Cho, J.-Y.; Tse, M. K.; Holmes, D.; Maleczka, R. E.,
Jr.; Smith, M. R., III Science 2002, 295, 305–308. For a recent
review, see:(c) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy,
J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890–931.
4,4,5,5-Tetramethyl-2-(2-(trifluoromethyl)phenyl)-1,3,2-diox-
aborolane 7i. 7i was prepared according to general procedure
starting from 2-iodo-1-trifluoromethylbenzene (281 mg, 1 mmol)
and PinBOiPr (335 mg, 1.8 mmol): yellow oil (250 mg, 93%). IR:
3063 (CH ar.), 2981 (CH3), 1354 (B-C), 1316 (B-Oasym.),
1140 (B-O sym.). 1H NMR δ 7.76-7.69 (m, 1H), 7.68-7.61
(m, 1H), 7.55-7.45 (m, 2H), 1.37 (s, 12H). 13C NMR δ 134.9
(CH), 134.0 (q, 2J = 31.4, Cq), 130.9 (CH), 130.1 (CH), 125.4
(3) Borylation of aryl halides with tetraoxydiboron reagents: (a)
Ishiyama, T.; Murata, M.; Miyaura, N. J. Org. Chem. 1995, 60, 7508–7510.
For reviews, see:(b) Ishiyama, T.; Chen, H. 4,4,40,40,5,5,50,50-Octa-
methyl-2,20-bi-1,3,2-dioxaborolane. In e-EROS Encyclopedia of Reagents
for Organic Synthesis; 10.1002/047084289X.rn00188.pub2. (c) Merino,
P.; Tejero, T. Angew. Chem., Int. Ed. 2010, 49, 7164–7165. See also:(d)
Billingsley, K. L.; Barder, T. E.; Buchwald, S. L. Angew. Chem., Int. Ed.
2007, 46, 5359–5363. (e) Molander, G. A.; Trice, S. L. J.; Dreher, S. D. J.
Am. Chem. Soc. 2010, 132, 17701–17703. Nevertheless, applicability on
a large scale remains hampered by the access to the tetraoxydiboron
reagents themselves:(f) Ishiyama, T.; Murata, M.; Ahiko, T.-a.; Miyaura,
N. Organic Syntheses; Wiley & Sons:New York, 2004; Collect. Vol. 10, pp
115-119.
(4) Borylation of aryl halides with dialkoxyborane reagents: Pd
catalysis: (a) Murata, M.; Watanabe, S.; Masuda, Y. J. Org. Chem.
1997, 62, 6458–6459. Cu:(b) Zhu, W.; Ma, D. Org. Lett. 2006,
8, 261–263. Ni:(c) Morgan, A. B.; Jurs, J. L.; Tour, J. M. J. Appl. Polym.
Sci. 2000, 76, 1257–1268. (d) Rosen, B. M.; Huang, C.; Percec, V. Org.
Lett. 2008, 10, 2597–2600. For bibliography, see: (e) Moldoveanu, C.;
Wilson, D. A.; Wilson, C. J.; Leowanawat, P.; Resmerita, A.-M.; Liu, C.;
Rosen, B. M.; Percec, V. J. Org. Chem. 2010, 75, 5438-5452 and
references therein. (f) Lam, K. C.; Marder, T. B.; Lin, Z. Organometallics
2010, 29, 1849-1857 and references therein. See also:(g) Doux, M.;
Mꢀezailles, N.; Melaimi, M.; Ricard, L.; Le Floch, P. Chem. Commun.
2002, 1566–1567. (h) Miller, W. D.; Fray, A. H.; Quatroche, J. T.;
Sturgill, C. D. Org. Process Res. Dev. 2007, 11, 359–364.
3
1
(q, J = 5.0, CH), 124.6 (q, J = 273.4, Cq), 84.6 (Cq), 24.8
(CH3). 11B NMR δ 31.2. 19F NMR (376 MHz) δ -59.7. LRMS
(ESIþ) m/z: 295.0 (100, [M þ Na]þ).
Suzuki coupling: Preparation of 40-Methyl-30-nitro-2-(tri-
fluoromethyl)-1,10-biphenyl 5. A dry, nitrogen-flushed 10-mL
flask equipped with a magnetic stirrer and a septum was charged
with 4-bromo-2-nitrotoluene (216 mg, 1 mmol), 3i (408 mg, 1.5
mmol), Pd(OAc)2 (2.2 mg, 0.01 mmol), S-Phos (8.2 mg, 0.02
mmol), and K3PO4 (848 mg, 4 mmol). Toluene (2 mL) and
water (0.4 mL) were then added, and the reaction mixture was
heated at 100 °C. The consumption of the bromide was followed
by GC. The completion was obtained after 3 h. The crude
mixture was filtered through a thin pad of silica gel. After
concentration of the filtrate, purification of the residue by flash
chromatography (eluent: cyclohexane/ethyl acetate, 99:1)
yielded 5 as a yellow oil (226 mg, 80%). IR: 3069 (CH ar.),
2971 and 2932 (CH3), 1530 (nitro ar.), 1125 and 1112 (CF3).
1H NMR δ 7.96 (d, J = 1.5, 1H), 7.78 (d, J = 7.6, 1H), 7.60 (t, J =
7.6, 1H), 7.53 (t, J = 7.6, 1H), 7.50-7.45 (m, 1H), 7.38 (d, J =
7.9, 1H), 7.33 (d, J = 7.6, 1H), 2.66 (s, 3H). 13C NMR δ 148.8
(Cq), 138.9 (Cq), 138.7 (q, 3J = 2.0, Cq), 133.6 (q, 4J = 1.2, CH),
133.1 (Cq), 132.5 (CH), 132.0 (CH), 131.8 (CH), 128.8 (q, 2J =
30.1, Cq), 128.4 (CH), 126.4 (q, 3J = 5.3, CH), 125.2 (q, 4J = 1.4,
CH), 124.1 (q, 1J = 273.9, Cq), 20.3 (CH3). 19F NMR δ -56.8.
LRMS (ESIþ) m/z: 304.0 ([M þ Na]þ, 100).
(5) Recent examples. Organolithium reagents: (a) Huang, S.; Pe-
tersen, T. B.; Lipshutz, B. H. J. Am. Chem. Soc. 2010, 132, 14021–14023.
(b) Clapham, K. M.; Batsanov, A. S.; Bryce, M. R.; Tarbit, B. Org. Biomol.
Chem. 2009, 7, 2155–2161. Aryl Grignard reagent:(c) Gerbino, D. C.;
Mandolesi, S. D.; Schmalz, H.-G.; Podestꢀa, J. C. Eur. J. Org. Chem.
2009, 3964–3972. For a 1.5-mol scale synthesis of an arylboronic acid
via an organomagnesium species, see:(d) Cladingboel, D. E. Org. Process
Res. Dev. 2000, 4, 153–155.
(6) For a review, see: (a) Knochel, P.; Dohle, W.; Gommermann, N.;
Kneisel, F. F.; Kopp, F.; Korn, T.; Sapountzis, I.; Vu, V. A. Angew. Chem.,
’ ASSOCIATED CONTENT
Int. Ed. 2003, 42, 4302–4320. For iPrMgCl LiCl, see:(b) Krasovskiy, A.;
3
Knochel, P. Angew. Chem., Int. Ed. 2004, 43, 3333–3336.
(7) Boymond, L.; Rottl€ander, M.; Cahiez, G.; Knochel, P. Angew.
Chem., Int. Ed. 1998, 37, 1701–1703.
S
Supporting Information. Copies of NMR spectra for all
b
new compounds; 1H, 11B (and 19F) NMR spectra of the crude
products for 3a and 3i; 1H NMR spectra of the crude product for
the borylation of 2m (Table 2, entry 3). This material is available
(8) See for instance: (a) Liu, C.-Y.; Gavryushin, A.; Knochel, P.
Chem. Asian J. 2007, 2, 1020–1030. (b) Hawkins, V. F.; Wilkinson,
M. C.; Whiting, M. Org. Process Res. Dev. 2008, 12, 1265–1268.
715
dx.doi.org/10.1021/op2000089 |Org. Process Res. Dev. 2011, 15, 710–716