ORGANIC
LETTERS
2011
Vol. 13, No. 7
1852–1855
Direct Alkylation of Heteroaryls Using
Potassium Alkyl- and
Alkoxymethyltrifluoroborates
Gary A. Molander,* Virginie Colombel, and Valerie A. Braz
Roy and Diana Vagelos Laboratories, Department of Chemistry, University of
Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
Received February 7, 2011
ABSTRACT
A direct alkylation of various heteroaryls using stoichiometric potassium alkyl- and alkoxymethyltrifluoroborates has been developed. This
method leads to the synthesis of complex substituted heterocycles, which have been obtained with yields up to 89%.
Heteroaryl moieties are important components in
natural products and pharmaceutical drugs.1 In the
past decade, many publications have reported C-H
bond activations of heterocycles using base/copper
salts with subsequent coupling to aryl halides,2 and
direct C-H activation/arylation of heteroaromatics
through palladium activation of aryl and heteroaryl
halides has also been observed.3 Few examples of
carbon-carbon bond formation involving organobor-
on compounds have been reported. In these contribu-
tions, C-H bond activation of heteroarenes can be
performed with arylboronic acids in the presence of a
catalytic amount of palladium acetate and either stoi-
chiometric copper acetate or TEMPO.4 These transfor-
mations were postulated to proceed via organo-
palladium intermediates generated by transmetalation
from the boronic acids.
(1) For bioactive quinoline derivatives, see: (a) Kolasa, T.; Gunn,
D. E.; Bhatia, P.; Woolds, K. W.; Gane, T.; Stewart, A. O.; Bouska, J. B.;
Harris, R. R.; Hulkower, K. I.; Malo, P. E.; Bell, R. L.; Carter, G. W.;
Brooks, C. D. W. J. Med. Chem. 2000, 43, 690–705. (b) Narayanan, S.;
Vangapandu, S.; Jain, R. Bioorg. Med. Chem. Lett. 2001, 11, 1133–1136.
(c) Jain, R.; Vaitilingam, B.; Nayyar, A.; Palde, P. B. Bioorg. Med.
Chem. Lett. 2003, 13, 1051–1054. (d) Payne, J. E.; Bonnefous, C.;
Symons, K. T.; Nguyen, P. M.; Sablad, M.; Rozenkrants, N.; Zhang,
Y.; Wang, L.; Yazdani, N.; Shiau, A. K.; Noble, S. A.; Rix, P.; Rao,
T. S.; Hassig, C. A.; Smith, N. D. J. Med. Chem. 2010, 53, 7739–7755.
For active alkylated benzimidazoles, see: (e) Bali, A.; Bansal, Y.;
Sugumaran, M.; Singh Saggu, J.; Balakumar, P.; Kaur, G.; Bansal, G.;
Sharma, A.; Singh, M. Bioorg. Med. Chem. 2005, 15, 3962–3965. (f)
Capkauskaite, E.; Baranauskiene, L.; Golovenko, D.; Manakova, E.;
Grazulis, S.; Tumkevicius, S.; Matulis, D. Bioorg. Med. Chem. 2010, 18,
7357–7364. (g) Kumar, S.; Bawa, S.; Gupta, H. Mini-Rev. Med Chem.
2009, 9, 1648–1654.
(2) (a) Do, H.-Q.; Daugulis, O. J. Am. Chem. Soc. 2007, 129, 12404–
12405. (b) Do, H.-Q.; Kashif Khan, R. M.; Daugulis, O. J. Am. Chem.
Soc. 2008, 130, 15185–15192. (c) Yoshizumi, T.; Tsurugi, H.; Satoh, T.;
Miura, M. Tetrahedron Lett. 2008, 49, 1598–1600. (d) Zhao, D.; Wang,
W.; Lian, S.; Yang, F.; Lan, J.; You, J. Chem.;Eur. J. 2009, 15, 1337–
1340. (e) Barbero, N.; SanMatin, R.; Dominguez, E. Org. Biomol. Chem.
2010, 8, 841–845.
The Minisci reaction and related processes provide
another useful means to alkylate or arylate various hetero-
arenes via C-H bond substitution5 in which radical inter-
mediates add to activated aromatic systems (Scheme 1).6
Within this context, the reactivity of a variety of radical
precursors has been studied with quinolines7 and deriva-
tives such as lepidine,8 but the conditions often involve the
use of the heteroaryl substrate as a solvent.
(4) (a) Liu, B.; Qin, X.; Li, K.; Li, X.; Guo, Q.; Lan, J.; You, J.
Chem.;Eur. J. 2010, 16, 11836–11839. (b) Kirchberg, S.; Tani, S.; Ueda,
K.; Yamagushi, J.; Studer, A.; Itami, K. Angew. Chem., Int. Ed. 2011,
DOI: 10.1002/anie.201007060.
(5) (a) Minisci, F.; Vismara, E.; Fontana, F. Heterocycles 1989, 28,
489–519. (b) Harrowven, D. C.; Sutton, B. J. Prog. Heterocycl. Chem.
2004, 16, 27–53.
(6) (a) Minisci, F.; Galli, R.; Cecere, M.; Malatesta, V.; Caronna, T.
Tetrahedron Lett. 1968, 5609–5612. (b) Bowman, W. R.; Storey, J. M. D.
Chem. Soc. Rev. 2007, 36, 1803–1822. (c) Vaillard, S. E. ; Schulte, B. ;
Studer, A. In Modern Arylation Methods; Ackermann, L., Ed.; Wiley-
VCH: Weinheim, 2009; pp 475-511.
(7) (a) Minisci, F.; Vismara, E.; Fontana, F.; Morini, G.; Serravalle,
M. J. Org. Chem. 1986, 51, 4411–4416. (b) Minisci, F.; Vismara, E.;
Fontana, F. J. Org. Chem. 1989, 54, 5224–5227.
(3) (a) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107,
174–238. (b) Beck, E. M.; Gaunt, M. J. Top. Curr. Chem. 2009, 292, 85–
121. (c) Fall, Y.; Reynaud, C.; Doucet, H.; Santelli, M. Eur. J. Org.
Chem. 2009, 4041–4050 and references therein.
r
10.1021/ol2003572
Published on Web 03/10/2011
2011 American Chemical Society