Synthesis of trans-[PtCl2(Ar2PAF)(PBEt3)] (14)
constrained to those CF3 groups not involved in P–F contacts,
again highlighting the importance of these interactions.
A solution of trans-[Pt(PEt3)Cl(m-Cl)]2 in CDCl3 was added to
Ar2PF (1 : 2 ratio) in a Young’s NMR tube. 31P (121.40 MHz,
1
2
CDCl3): dPA 146.5 ppm (d + sats, JPt–P = 3088 Hz, JP–P = 567
Acknowledgements
Hz) dPB 17.4 ppm (d + sats, 1JPt–P = 2570 Hz, 2JP–P = 567 Hz). 19
F
We would like to thank Dr D. S. Yufit for determining one
of the crystal structures, the EPSRC (UK) for research grant
EP/C536436/1 (MRP), and for a research studentship (HJS),
and the Maria da Grac¸a Memorial Fund/Chemistry Department,
University of Durham (PKM), for financial support.
(376.34 MHz, CDCl3): d -52.3 ppm (d, 4JP–F = 19 Hz, ortho-CF3),
d -63.8 ppm (s, para-CF3).
Synthesis of trans-[PtCl2(Ar2PAH)(PBEt3)] (15)
A solution of trans-[PtCl(m-Cl)(PEt3)]2 (0.0570g; 0.075 mmols) in
CDCl3 was added to Ar2PH (0.15 mmols) in a Young’s NMR tube.
31P (161.9 MHz, CDCl3): dPA -7.6 ppm (d + sats, 1JPt–P = 2362 Hz,
References
1 S. M. Cornet, K. B. Dillon and A. E. Goeta, Inorg. Chim. Acta, 2005,
358, 844.
2 M. Scholz, H. W. Roesky, D. Stalke, K. Keller and F. T. Edelmann,
J. Organomet. Chem., 1989, 366, 73.
3 L. Weber, H. Schumann and R. Boese, Chem. Ber., 1990, 123, 1779.
4 F. Castan, A. Baceiredo, F. Dahan, N. Auner and G. Bertrand, Chem.
Commun., 1992, 1274.
5 M. Yoshifuji, M. Abe, K. Toyota, I. Miyahara and K. Hirotsu, Bull.
Chem. Soc. Jpn., 1993, 66, 3831.
6 H. Voelker, U. Pieper, H. W. Roesky and G. M. Sheldrick, Z. Natur-
forsch., 1994, 49b, 255.
7 T. Lubben, H. W. Roesky, H. Gornitzka, A Steiner and D. Stalke,
Eur. J. Solid State Inorg. Chem., 1995, 32, 121.
8 K. B. Dillon, V. C. Gibson, J. A. K. Howard, L. J. Sequeira and J. W.
Yao, Polyhedron, 1996, 15, 4173.
9 J.-T. Allemann, H. W. Roesky, R. Murugavel, E. Parisini, M. Nolte-
meyer, H.-G. Schmidt, O. Muller, R. Herbst-Irmer, L. N. Markovskii
and Y. G. Shermolovich, Chem. Ber., 1997, 130, 1113.
1
2
2JP–P = 420 Hz) dPB 17.1 ppm (d + sats, JPt–P = 2798 Hz, JP–P
=
420 Hz). 19F (376.34 MHz, CDCl3): d -60.3 ppm (d, 4JP–F = 8 Hz,
ortho-CF3), d -65.0 ppm (s, para-CF3).
Synthesis of trans-[PtCl2(ArtBuPACl)(PBEt3)] (16)
A solution of trans-[PtCl(m-Cl)(PEt3)]2 (0.0192 g; 0.025 mmols) in
CDCl3 was added to ArtBuPCl (0.05 mmols) in a Young’s NMR
1
tube. 31P (161.9 MHz, CDCl3): dPA 112.0 ppm (d + sats, JPt–P
=
2466 Hz, 2JP–P = 529 Hz) dPB 13.6 ppm (d + sats, 1JPt–P = 2754 Hz,
2JP–P = 529 Hz). 19F (376.34 MHz, CDCl3): d -52.3 ppm (d, 4JP–F
19 Hz, ortho-CF3), d -63.8 ppm (s, para-CF3).
=
X-ray Crystallography
10 M. G. Davidson, K. B. Dillon, J. A. K. Howard, S. Lamb and M. D.
Roden, J. Organomet. Chem., 1998, 550, 481.
Single crystal structure determinations were carried out from data
11 H. Voelker, D. Labahn, F. M. Bohnen, R. Herbst-Irmer, H. W. Roesky,
D. Stalke and F. T. Edelmann, New. J. Chem., 1999, 23, 905.
12 A. S. Batsanov, S. M. Cornet, K. B. Dillon, A. E. Goeta, P. Hazendonk
and A. L. Thompson, J. Chem. Soc., Dalton Trans., 2002, 4622.
13 M. Freytag, F. T. Edelmann, L. Ernst, P. G. Jones and R. Schmutzler,
Z. Anorg. Allgem. Chem., 2004, 630, 377.
14 S. M. Cornet, K. B. Dillon, A. E. Goeta, J. A. K. Howard, M. D. Roden
and A. L. Thompson, J. Organomet. Chem., 2005, 690, 3630.
15 S. M. Cornet, K. B. Dillon, J. A. K. Howard, P. K. Monks and A. L.
Thompson, Acta Cryst. C, 2009, 65, o195.
16 A. Dubourg, J. P. Declerq, H. Ranaivonjatovo, J. Escudie´, C. Couret
and M. Lazraq, Acta Cryst. C, 1988, 44, 2004.
17 A. S. Batsanov, S. M. Cornet, L. A. Crowe, K. B. Dillon, R. K. Harris,
P. Hazendonk and M. D. Roden, Eur. J. Inorg. Chem., 2001, 1729.
18 A. Dumitrescu, H. Gornitzka, W. W. Schoeller, D. Bourissou and G.
Bertrand, Eur. J. Inorg. Chem., 2002, 1953.
collected using graphite monochromated Mo-Ka radiation (l =
˚
0.71073 A) on a Bruker SMART-CCD 1 K diffractometer. The
temperature was controlled using an open flow N2 Cryostream
cooling device.43 In each case, a series of narrow w-scans (0.3◦)
were performed at several j-settings to maximise data coverage.
Cell parameters were determined and refined using the SMART
software,44 and raw frame data were integrated using the SAINT
program.45 The structures were solved using direct methods,46 and
refined by full-matrix least-squares on F2 using SHELXTL,46 and
the graphical user interface Olex2.47
Due to rotational disorder of the CF3 groups in the Ar ligand,
different cooling strategies were employed. Crystals of (1), (9)
and (10) were ‘flash frozen’ at 120 K and data were collected at
that temperature. However Ar3P (3) underwent significant stress
when rapidly cooled, resulting in degradation of crystallinity.
Slow cooling from room temperature resulted in no significant
structural change, except thermal contraction of the unit cell
dimensions and reduced thermal motion of the CF3 groups. Hence
only the lowest temperature data are reported. These data were
collected at 100 K to minimise the disorder present, having been
cooled slowly from room temperature at 60 K h-1.
19 V. I. Rudzevich, H. Gornitzka, K. Miqueu, J.-M. Sotiropoulos, G.
Pfister-Guillouzo, V. D. Romanenko and G. Bertrand, Angew. Chem.
Int. edn
, 2002, 41, 1193.
20 K. Miqueu, J.-M. Sotiropoulos, G. Pfister-Guillouzo, V. L. Rudzevich,
H. Gornitzka, V. Lavallo and V. D. Romanenko, Eur. J. Inorg. Chem.,
2004, 2289.
21 C. Chen, R. Fro¨hlich, G. Kehr and G. Erker, Chem. Commun., 2010,
46, 3580.
22 M. W. Eyring, E. C. Zuerner and L. J. Radonovich, Inorg. Chem., 1981,
20, 3405.
23 C. N. Iverson, R. J. Lachicotte, C. Mu¨ller and W. D. Jones, Organomet.,
2002, 21, 5320.
24 S. M. M. Cornet, K. B. Dillon, A. E. Goeta and A. L. Thompson, Acta
Cryst. C, 2005, 61, m74.
25 E. M. Pelczar, E. A. Nytko, M. A. Zhuravel, J. M. Smith, D. S. Glueck,
R. Sommer, C. D. Incarvito and A. L. Rheingold, Polyhedron, 2002,
21, 2409.
26 M. J. Atherton, J. Fawcett, J. H. Holloway, E. G. Hope, D. R. Russell
and G. C. Saunders, J. Chem. Soc. Dalton Trans., 1997, 2217.
27 C. Corcoran, J. Fawcett, S. Friedrichs, J. H. Holloway, E. G. Hope,
D. R. Russell, G. C. Saunders and A. M. Stuart, J. Chem. Soc., Dalton
Trans., 2000, 161.
Additionally, the disorder in the CF3 groups of (1) and (10)
was modelled to give the most sensible structural refinement.
In (1) the one disordered CF3 group is modelled using multiple
split occupancy isotropic atoms. The additional parameters for
anisotropic refinement did not significantly improve the model
statistics. In (10) a constrained anisotropic refinement of the
disordered CF3 group resulted in the more suitable model. It is
noteworthy that all of the disorder present in the Ar ligands is
This journal is
The Royal Society of Chemistry 2011
Dalton Trans., 2011, 40, 1808–1816 | 1815
©