1272
V. A. Ignatenko et al. / Tetrahedron Letters 52 (2011) 1269–1272
olidinoindoline scaffold has been devised with consideration to
biogenetic relation of these alkaloids to tryptophan.13 Therefore,
a deliberate emphasis was laid to preserve the indole scaffold
and to use C5 isoprenoid units as precursors. Also the fact that
References and notes
1. Carle, J. S.; Christophersen, C. J. J. Org. Chem. 1981, 46, 3440–3443; (b) Holst, P.
B.; Anthoni, U.; Christophersen, C.; Nielsen, P. H. J. Nat. Prod. 1994, 57, 997–
1000; (c) Holst, P. B.; Anthoni, U.; Christophersen, C.; Nielsen, P. H. J. Nat. Prod.
1994, 57, 1310–1312.
2. Rochfort, S. J.; Moore, S.; Craft, C.; Martin, N. H.; Van Wagoner, R. M.; Wright, J.
L. C. J. Nat. Prod. 2009, 72, 1773–1781.
3. Carle, J. S.; Christophersen, C. J. Am. Chem. Soc. 1979, 101, 4012–4013.
4. Reviewed in: Blunt, J. W.; Copp, B. R.; Munro, M. H. G.; Northcote, P. T.; Prinsep,
M. R. Nat. Prod. Rep. 2005, 22, 15–61.
5. For representative examples, see: (a) Boyarskikh, V.; Nyong, A.; Rainier, J. D.
Angew. Chem., Int. Ed. 2008, 47, 5374–5377; (b) Austin, J. F.; Kim, S. G.; Sinz, C.
J.; Xiao, W. J.; MacMillan, D. W. C. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5482–
5487; (c) Fuchs, J. R.; Funk, R. L. Org. Lett. 2005, 7, 677–680; (d) Morales-Rios,
M. S.; Suarez-Castillo, O. R. Nat. Prod. Commun. 2008, 3, 629–642.
6. Ignatenko, V. A.; Deligonul, N.; Viswanathan, R. Org. Lett. 2010, 12, 3594–3597.
7. Booker-Milburn, K. I.; Fedouloff, M.; Paknoham, S. J.; Strachan, J. B.; Melville, J.
L.; Voyle, M. Tetrahedron Lett. 2000, 41, 4657–4661.
flustramines potentiate human
a4b2 neuronal nicotinic receptors
rendering them an excellent progenitor for the development of
selective regulators of this receptor14 calls for reliable generation
of the indoline core.15 Straightforward synthetic pathways are nec-
essary for the scaffold derivatization of these natural products, in
order to aid in full evaluation of pharmacological effects elicited
by this privileged core in small molecule drug discovery.16 Future
efforts are underway to render access to these scaffolds in high
enantioselection and to obtain each antipode of this important nat-
ural product like scaffold.
8. Steglich, W.; Hofle, G. Angew. Chem., Int. Ed. 1969, 8, 981.
9. Linton, E. C.; Kozlowski, M. C. J. Am. Chem. Soc. 2008, 130, 16162–16163.
10. Representation of relative electron densities on 10 reflects those of frontier
orbitals. Transisition state assembly of 15 to 11 does not represent any
enantioselection during the process, one conformation is represented for
simplicity.
11. Fleming, I. Frontier Orbitals and Organic Chemical Reactions; Wiley-Chichester:
New York, 1978.
12. Based on the pKa of oxindole NH, it is expected to be a competing nucleophile
to an OH group.
Acknowledgments
The authors thank Dr. Larry Sallans (Univ. Cincinnati) for MS
data collection of all new compounds reported here. RV thanks
Ms. Deepti Sharma for obtaining IR data of select compounds. RV
thanks Dr. Karthikeyan Thandavamurthy for efforts toward com-
pletion of the experimental section of the manuscript.
13. Li, S. M. Nat. Prod. Rep. 2010, 27, 57–78.
14. Sala, F.; Mulet, J.; Reddy, K. P.; Bernal, J. A.; Wikman, P.; Valor, L. M.; Peters, L.;
Konig, G. M.; Criado, M.; Sala, S. Neurosci. Lett. 2005, 373, 144–149.
15. (a) Viswanathan, R.; Prabhakaran, E. N.; Plotkin, M. A.; Johnston, J. N. J. Am.
Chem. Soc. 2003, 125, 163–168; (b) Chandra, A.; Viswanathan, R.; Johnston, J. N.
Org. Lett. 2007, 9, 5027–5029.
16. (a) Franz, A. K.; Dreyfuss, P. D.; Schreiber, S. L. J. Am. Chem. Soc. 2007, 129,
1020–1021; (b) Galliford, C. V.; Scheidt, K. A. Angew. Chem., Int. Ed. 2007, 46,
8748–8758; (c) Ulaczyk-Lesanko, A.; Hall, D. G. Curr. Opin. Chem. Biol. 2005, 9,
266–276.
Supplementary data
Supplementary data (general experimental methods, additional
experimental procedures, compound characterization data and
copies of spectra for all new compounds) associated with this arti-