Organometallics
ARTICLE
Typical Procedure for 1-10. In a drybox, 2.20-3.50 mg of com-
pounds 1-10 and 329 mg of tetrabutylammonium tetrafluoroborate
were dissolved in dry THF in a 10.0 mL volumetric flask to give a 0.001
M solution. The solution was loaded into an electrochemical cell with
electrodes, and electrical leads were attached for analysis. After initial
scanning, approximately 1.70 mg of ferrocene was added to the cell and
the solution was scanned again.
Typical Procedure for 11-14. In a drybox, 2.20-3.50 mg of
compounds 11-14 and 329 mg of tetrabutylammonium tetrafluorobo-
rate were dissolved in dry THF in a 10.0 mL volumetric flask to give a
0.001 M solution. The solution was loaded into an electrochemical cell
with electrodes, and electrical leads were attached for analysis. After
initial scanning, approximately 1.70 mg of ferrocene was added to the
cell and the solution was scanned again.
Cyclic Voltammetry for Oxidation Scans. Cyclic voltammetry
experiments were performed in a nitrogen-filled MBraun drybox outfitted
with a CH Instrument workstation (CHI630C) at room temperature.
Tetrabutylammonium hexafluorophosphate was recrystallized five times using
ethyl acetate and ether, dried thoroughly under vacuum, and stored in the
drybox. Ferrocene was purified via sublimation under vacuum and stored in
the drybox. All glassware was oven-dried overnight before use. A glassy carbon
working electrode was polished with 0.05 μm alumina and thoroughly cleaned
and dried before use. A silver wire was utilized as a quasi-reference electrode,
and a platinum wire was the counter electrode. All scans were performed at a
scan rate of 0.1 V/s unless otherwise stated. All spectra were referenced to SCE
using ferrocene as an internal standard. Samples were analyzed without
ferrocene initially and then analyzed again with ferrocene for referencing.
Typical Procedure for 1-6. In a drybox, 2.20-3.50 mg of com-
pounds 1-6 and 387 mg of tetrabutylammonium hexafluorophosphate
were dissolved in dry DCM in a 10.0 mL volumetric flask to give a 0.001
M solution. The solution was loaded into an electrochemical cell with
electrodes, and electrical leads were attached for analysis. After initial
scanning, approximately 1.70 mg of ferrocene was added to the cell and
the solution was scanned again.
’ REFERENCES
(1) (a) Power, P. P. Chem. Rev. 1999, 99, 3463–3503. (b) Mathey, F.
Angew. Chem., Int. Ed. 2003, 42, 1578–1604. (c) Power, P. P. J. Chem.
Soc., Dalton Trans. 1998, 2939–2951. (d) Galbraith, J. M.; Blank, E.;
Shaik, S.; Hiberty, P. C. Chem.—Eur. J. 2000, 6, 2425–2434.
(2) (a) Dillon, K. B.; Mathey, F.; Nixon, J. F. Phosphorus: The Carbon
Copy; Wiley: New York, 1998. (b) Appel, R. Pure Appl. Chem. 1987,
59, 977–82. (c) Appel, R.; Knoll, F. Adv. Inorg. Chem. 1989, 33, 259–361.
(d) Markovskii, L. N.; Romanenko, V. D. Tetrahedron 1989,
45, 6019–6090. (e) Mathey, F. Acc. Chem. Res. 1992, 25, 90–96.
(3) Culcasi, M. G.; Gronchi, G.; Escudie, J.; Couret, C.; Pujol, L.;
Tordo, P. J. Am. Chem. Soc. 1986, 108, 3130–3132.
(4) Bard, A. J.;Cowley, A. H.;Kilduff, J. E.;Leland, J. K.;Norman, N. C.;
Pakulski, M.; Heath, G. A. J. Chem. Soc., Dalton Trans. 1987, 249–251.
(5) Cetinkaya, B.; Hudson, A.; Lappert, M. F.; Goldwhite, H.
J. Chem. Soc., Chem. Commun. 1982, 609–610.
(6) (a) Shah, S.; Burdette, S. C.; Swavey, S.; Urbach, F. L.; Prota-
siewicz, J. D. Organometallics 1997, 16, 3395–3400. (b) Dutan, C.; Shah,
S.; Smith, R. C.; Choua, S.; Berclaz, T.; Geoffroy, M.; Protasiewicz, J. D.
Inorg. Chem. 2003, 42, 6241–6251.
(7) Sasaki, S.; Aoki, H.; Sutoh, K.; Hakiri, S.; Tsuji, K.; Yoshifuji, M.
Helv. Chim. Acta 2002, 85, 3842–3847.
(8) (a) Nagahora, N.; Sasamori, T.; Takeda, N.; Tokitoh, N. Chem.—
Eur. J. 2004, 10, 6146–6151. (b) Sasamori, T.; Mieda, E.; Nagahora, N.;
Takeda, N.; Takagi, N.; Nagase, S.; Tokitoh, N. Chem. Lett. 2005,
34, 166–167. (c) Sasamori, T.; Tsurusaki, A.; Nagahora, N.; Matsuda, K.;
Kanemitsu, Y.; Watanabe, Y.; Furukawa, Y.; Tokitoh, N. Chem. Lett. 2006,
35, 1382–1383. (d) Sasamori, T.; Tsurusaki, A.; Nagahora, N.; Matsuda, K.;
Kanemitsu, Y.; Watanabe, Y.; Furukawa, Y.; Tokitoh, N. Chem. Lett. 2006,
35, 1382–1383. (e) Sasamori, T.; Mieda, E.; Nagahora, N.; Sato, K.; Shiomi,
D.; Takui, T.; Hosoi, Y.; Furukawa, Y.; Takagi, N.; Nagase, S.; Tokitoh, N. J.
Am. Chem. Soc. 2006, 128, 12582–12588. (f) Nagahora, N.; Sasamori, T.;
Watanabe, Y.; Furukawa, Y.; Tokitoh, N. Bull. Chem. Soc. Jpn. 2007,
80, 1884–1900. (g) Nagahora, N.; Sasamori, T.; Hosoi, Y.; Furukawa, Y.;
Tokitoh, N. J. Organomet. Chem. 2008, 693, 625–632. (h) Sasamori, T.;
Hori, A.; Kaneko, Y.; Tokitoh, N. New J. Chem. 2010, 34, 1560–1564.
(9) Moser, C.; Nieger, M.; Pietschnig, R. Organometallics 2006,
25, 2667–2672.
Typical Procedure for 12 and 13. In a drybox, 2.20-3.50 mg of
compounds 12 and 13 and 387 mg of tetrabutylammonium hexafluor-
ophosphate were dissolved in dry DCM in a 10.0 mL volumetric flask to
give a 0.001 M solution. The solution was loaded into an electrochemical
cell with electrodes, and electrical leads were attached for analysis. After
initial scanning, approximately 1.70 mg of ferrocene was added to the
cell and the solution was scanned again.
Computational Methods. All calculations employed the Gauss-
ian03 (Rev.D.01) software package26 and were performed in parallel on
Intel Pentium 4 Xeon EM64T quad-core processors. Kohn-Sham
formalized density functional theory was used to calculate the ground-
state electronic and geometric structures with the B3LYP hybrid
functional and 6-31þG** basis sets (i.e., B3LYP/6-31þG**).
(10) Tsuji, K. S.; Sasaki, S.; Yoshifuji, M. Tetrahedron Lett. 1999,
40, 3203–3206.
(11) Schoeller, W. W.; Niemann, J.; Thiele, R.; Haug, W. Chem. Ber.
1991, 124, 417–21.
(12) (a) Geoffroy, M.; Jouaiti, A.; Terron, G.; Cattani-Lorente,
M.; Ellinger, Y. J. Phys. Chem. 1992, 96, 8241–8245. (b) Jouaiti, A.;
Geoffroy, M.; Terron, G.; Bernardinelli, G. J. Chem. Soc., Chem.
Commun. 1992, 155–156. (c) Jouaiti, A.; Geoffroy, M.; Terron, G.;
Bernardinelli, G. J. Am. Chem. Soc. 1995, 117, 2251–2258. (d) Jouaiti,
A.; Al Badri, A.; Geoffroy, M.; Bernardinelli, G. J. Organomet. Chem.
1997, 529, 143–149. (e) Al Badri, A.; Jouaiti, A.; Geoffroy, M. Magn.
Reson. Chem. 1999, 37, 735–742. (f) Rosa, P.; Gouverd, C.; Bernar-
dinelli, G.; Berclaz, T.; Geoffroy, M. J. Phys. Chem. A 2003,
107, 4883–4892. (g) Gouverd, C.; Brynda, M.; Berclaz, T.; Geoffroy,
M. J. Organomet. Chem. 2006, 691, 72–78.
’ ASSOCIATED CONTENT
S
Supporting Information. Scan rate vs ΔEp plots for
b
€
(13) (a) Oberg, E.; Sch€afer, B.; Geng, X.-L.; Pettersson, J.; Hu, Q.;
ferrocence and compound 1, as well as variable scan rate
voltammogram data for compound 4. This material is available
Kritikos, M.; Rasmussen, T.; Ott, S. J. Org. Chem. 2009, 74, 9265–9273. (b)
€
Sch€afer, B.; Oberg, E.; Kritikos, M.; Ott, S. Angew. Chem., Int. Ed. 2008,
47, 8228–8231. (c) Geng, X.-L.; Hu, Q.; Sch€afer, B.; Ott, S. Org. Lett. 2010,
12, 692–695. (d) Geng, X. L.; Ott, S. Chem. Commun. 2009, 7206–7208.
(14) (a) Sasaki, S.; Murakami, F.; Yoshifuji, M. Angew. Chem., Int. Ed.
1999, 38, 340–343. (b) Murakami, F.; Sasaki, S.; Yoshifuji, M. J. Am.
Chem. Soc. 2005, 127, 8926–8927. (c) Murakami, F.; Sasaki, S.;
Yoshifuji, M. Angew. Chem., Int. Ed. 2002, 41, 2574–2576.
(15) Gudimetla, V. B.; Ma, L.; Washington, M. P.; Payton, J. L.;
Cather Simpson, M.; Protasiewicz, J. D. Eur. J. Inorg. Chem.
2010, 854–865.
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: protasiewicz@case.edu.
’ ACKNOWLEDGMENT
We thank the National Science Foundation for support (CHE-
0748982), and Prof. Daniel Scherson (CWRU) for helpful discussions.
(16) Back, O.; Celik, M. A.; Frenking, G.; Melaimi, M.; Donnadieu,
B.; Bertrand, G. J. Am. Chem. Soc. 2010, 132, 10262–10263.
1982
dx.doi.org/10.1021/om200014f |Organometallics 2011, 30, 1975–1983