20
T. Martin et al. / Tetrahedron: Asymmetry 22 (2011) 12–21
(ꢀ)-
a
-Amino acid 11a: Solid. HRMS (ESI+) calcd for C10H11F3NO3
2H Ar). 19F NMR (280 MHz, DMSO-d6) d: ꢀ69.6 (s). GC-MS (EI,%)
m/z 277 [M+], 218 (100), 148, 134, 110.
m/z 250.0691, found 250.0694. HPLC: retention time: 4.35 min.
Enantiomeric purity: 98.1% ee.
( )-N,N-Dimethyl a-(p-Methoxyphenyl)-a-trifluoromethylgly-
(+)-a
-Amino acid 11b: Solid. HRMS (ESI+) calcd for C10H11F3NO3
cine methyl ester 15. Selected data: 1H NMR (300 MHz, DMSO-
d6) d: 2.35 (s, 6H, N(CH3)2), 3.77 (s, 3H, COOCH3), 3.84 (s, 3H,
m/z 250.0691, found 250.0692. HPLC: retention time: 3.90 min.
Enantiomeric purity: 98.3% ee.
3
3
OCH3), 6.98 (d, JH,H = 8.8 Hz, 2H Ar), 7.29 (d, JH,H = 8.8 Hz, 2H
Ar). 19F NMR (280 MHz, DMSO-d6) d: ꢀ62.9 (s). GC-MS (EI,%) m/z
291 [M+], 232 (100), 148, 133, 110.
4.7.2. ( ) a-Phenyl-a-trifluoromethylglycine 10
( )-Amino acid 10 was obtained in ꢁ22% yield (ꢁ169 mg) using
the above described procedure. White powder. Mp 245 °C (sublima-
tion). 1H NMR (300 MHz, DMSO-d6) d: 7.27 (m, 3H Ph), 7.74 (m, 2H
Ph). 19F NMR (280 MHz, DMSO-d6) d: ꢀ70.8 (s). 13C NMR (75 MHz,
4.8.2. a-Phenyl-a-trifluoromethylglycine methyl ester 12
( )-Amino ester 12 was obtained in 70% yield (ꢁ185 mg)
using the procedure described above. Oil. 1H NMR (300 MHz,
DMSO-d6) d: 3.08 (s, 2H, NH2), 3.74 (s, 3H, OCH3), 7.43 (m, 3H
Ph), 7.54 (m, 2H Ph). 19F NMR (280 MHz, DMSO-d6) d: ꢀ73.4
(s). 13C NMR (75 MHz, DMSO-d6) d: 53.0 (s, OCH3), 67.6 (q,
2
1
DMSO-d6) d: 66.6 (q, JC,F = 23.6 Hz, C-2), 126.7 (q, JC,F = 282.3 Hz,
CF3), 127.1 (s, CH Ph), 127.3 (s, 2 ꢅ CH Ph), 127.4 (s, 2 ꢅ CH Ph),
140.3 (s, Cq Ph), 168.7 (s, COOH). MS (ESIꢀ): m/z 218 [M-H]. HRMS
(ESIꢀ) calcd for C9H7F3NO2 m/z 218.0429, found 218.0430.
1
2JC,F = 26.3 Hz, C-2), 124.6 (q, JC,F = 284.4 Hz, CF3), 126.9 (s,
The same procedure was applied to both the (ꢀ)-(R)- and (+)-
(S)-enantiomers 5a and 5b but the corresponding amino acids
10a and 10b were directly engaged in the esterification step.
2 ꢅ CH Ph), 128.4 (s, 2 ꢅ CH Ph), 129.0 (s, CH Ph), 135.1 (s, Cq
Ar), 169.5 (s, COOCH3). IR (film, cmꢀ1): 3402, 3339, 3011, 3001,
2958, 1748, 1604, 1501. GC–MS (EI,%) m/z 233 [M+], 174 (100),
104, 96, 79. HRMS (ESI+) calcd for C10H11F3NO2 m/z 234.0742,
(ꢀ)-(R)-
a
-Amino acid 10a: Solid. HRMS (ESIꢀ) calcd for
C9H7F3NO2 m/z 218.0429, found 218.0434. HPLC retention time:
found 234.0746.
25
589
4.06 min. Enantiomeric purity: 98.4% e.e.
(ꢀ)-(R)-Amino ester 12a. Oil.
½
aꢆ
¼ ꢀ3:05 (c 0.01 g/mL,
(+)-(S)-a
-Amino acid 10b: Solid. HRMS (ESIꢀ) calcd for
MeOH). HRMS (ESI+) calcd for C10H11F3NO2 m/z 234.0742, found
C9H7F3NO2 m/z 218.0429, found 218.0432. HPLC: retention time:
4.98 min. Enantiomeric purity: 98.2% e.e.
234.0744. C10H10F3NO2 (233.19): calcd. C 51.51, H 4.32, N 6.01;
found C 51.62, H 4.39, N 6.12.
25
589
(+)-(S)-Amino ester 12b. Oil. ½
a
ꢆ
¼ þ3:3 (c 0.01 g/mL, MeOH).
HRMS (ESI+) calcd for C10H11F3NO2 m/z 234.0742, found 234.0745.
It was not possible to determine the enantiomeric purity of
these amino esters by chiral GC or HPLC.
4.8. Typical procedure for the preparation of a-aryl-a-
trifluoromethylglycine methyl esters 12 and 13 (Scheme 5)
A solution of trimethylsilyldiazomethane (0.21 g, 1.8 mmol) in
diethyl ether (4 mL) was added dropwise to a solution of ( )-amino
acid 11 (0.30 g, 1.2 mmol) in a mixture of (3/2) toluene/methanol
(10 mL). The reaction mixture (slightly yellow) was stirred at room
temperature for 30 min. After solvent removal at reduced pressure,
the crude was purified by silica gel column chromatography (elu-
ent: petroleum ether/AcOEt 70/30) to afford the desired ( )-amino
ester 13 (0.20 g, 76%). It is worth noting that small amounts of N-
methyl and N,N-dimethyl amino esters 14 and 15 were detected in
the crude mixture by 1H, 19F NMR and GC-MS.
Acknowledgments
The authors would like to thank S. Colombel for her help in the
synthesis of hydantoins 7 and 8, Dr. D. Harakat for HRMS analyses,
Dr. M.-N. Petit for XRPD measurements; Dr. M. Sanselme and Dr. S.
Coste for X-ray of compounds 5b and 9; Dr. Y. Cartigny for TG/DSC
measurements, and Dr. K. Plé with the writing of this Letter.
References
The same procedure was also applied to both the (+)- and (ꢀ)-
enantiomers 11a and 11b.
1. (a) Kukhar, V. P.; Soloshonok, V. A. Fluorine Containing Amino Acids: Synthesis
and Properties; Wiley: New York, 1995; (b) Zanda, M. New J. Chem. 2004, 28,
1401–1411; (c) Fluorine-Containing Amino Acids and Peptides: Fluorinated
Synthons for Life Sciences; Soloshonok, V. A., Ed.ACS Symposium Series 911;
American Chemical Society: Washington, 2005.
4.8.1.
a-(p-Methoxyphenyl)-a-trifluoromethylglycine methyl
ester 13
( )-Amino ester 13. Oil. 1H NMR (300 MHz, DMSO-d6) d: 3.02 (s,
2. For review on non-fluorinated
a,a-disubstituted a-amino acids, see: (a)
2H, NH2), 3.74 (s, 3H, COOCH3), 3.76 (s, 3H, OCH3), 6.97 (d,
Cativiela, C.; Diaz-de-villegas, M. D. Tetrahedron: Asymmetry 1998, 9, 3517–
3599; For review on fluorinated ones, see: (b) Sani, M.; Molteni, M.; Bruché, L.;
Volonterio, A.; Zanda, M. Synthesis and Properties of New Fluorinated
Peptidomimetics. In ACS Symposium Series 911; Soloshonok, V. A., Ed.;
American Chemical Society: Washington, 2005; pp 572–592.
3. (a) Mazaleyrat, J.-P.; Wakselman, M.; Formaggio, F.; Crisma, M.; Toniolo, C.
Tetrahedron Lett. 1990, 40, 6245–6248; (b) Koksch, B.; Sewald, N.; Hofmann, H.-
J.; Burger, K.; Jakubke, H.-D. J. Pept. Sci. 1997, 3, 157–167.
4. Banks, R. E.; Tatlow, J.-C.; Smart, B. E. Organofluorine Chemistry: Principles and
Commercial Applications; Plenum Press: New York, 1994.
5. (a) Bordusa, F.; Dahl, C.; Jakubke, H.-D.; Burger, K.; Koksch, B. Tetrahedron:
Asymmetry 1999, 10, 307–313; (b) Abele, S.; Seebach, D. Eur. J. Org. Chem. 2000,
1–15.
6. Sewald, N.; Burger, K. In Fluorine-Containing Amino Acids: Synthesis and
Properties; Kukhar, V. P., Soloshonok, V. A., Eds.; Wiley: Chichester, 1995; pp
139–220.
7. Brigaud, T.; Chaume, G.; Pytkowicz, J.; Huguenot, F. Chim. Oggi/Chem. Today
2007, 25, 8–10.
8. For selected references, see: (a) Soloshonok, V. A.; Gerus, I. I.; Yagupol’skii, Y. L.
Zh. Org. Khim. 1986, 22, 1335–1337; (b) Osipov, S. N.; Golubev, A. S.; Sewald, N.;
Burger, K. Tetrahedron Lett. 1997, 38, 5965–5966.
9. (a) Keller, J. W.; Hamilton, B. J. Tetrahedron Lett. 1986, 27, 1249–1250; (b) Shaw,
N. M.; Naughton, A. B. Tetrahedron 2004, 60, 747–752; (c) Koksch, B.;
Quaedflieg, P. J. L. M.; Michel, T.; Burger, K.; Broxterman, Q. B.; Schoemaker,
H. E. Tetrahedron: Asymmetry 2004, 15, 1401–1407.
3
3JH,H = 8.8 Hz, 2H Ar), 7.46 (d, JH,H = 8.8 Hz, 2H Ar). 19F NMR
(280 MHz, DMSO-d6) d: ꢀ73.7 (s). 13C NMR (75 MHz, DMSO-d6)
2
d: 52.9 (s, COOCH3), 55.2 (s, OCH3), 66.5 (q, JC,F = 26.9 Hz, C-2),
1
113.7 (s, 2 ꢅ CH Ar), 124.7 (q, JC,F = 284.4 Hz, CF3), 126.9 (s, Cq
Ar), 128.3 (s, 2 ꢅ CH Ar), 159.7 (s, Cq, COMe), 169.7 (s, COOCH3).
IR (film, cmꢀ1): 3401, 3340, 3009, 2959, 2842, 1745, 1611, 1582.
GC-MS (EI, %) m/z 263 [M+], 204 (100), 134, 109, 94, 77. HRMS
(ESI+) calcd for C11H13F3NO3 m/z 264.0848, found 264.0843.
25
589
(ꢀ)-Amino ester 13a. Oil. ½
a
ꢆ
¼ ꢀ2:2 (c 0.01 g/mL, MeOH).
HRMS (ESI+) calcd for C11H13F3NO3 m/z 264.0848, found
264.0845. C11H12F3NO3 (263.216): calcd. C 50.19, H 4.60, N 5.32;
found C 50.24, H 4.69, N 5.29.
25
589
(+)-Amino ester 13b. Oil. ½
aꢆ
¼ þ2:1 (c 0.01 g/mL, MeOH).
HRMS (ESI+) calcd for C11H13F3NO3 m/z 264.0848, found 264.0841.
It was not possible to determine the enantiomeric purity of
these amino esters by chiral GC or HPLC.
( )-N-Methyl
a-(p-Methoxyphenyl)-a-trifluoromethylglycine
methyl ester 14. Selected data: 1H NMR (300 MHz, DMSO-d6) d:
3
2.27 (d, JH,H = 5.6 Hz, 3H, NHCH3), 3.76 (s, 3H, COOCH3), 3.79 (s,
10. Sewald, N.; Seymour, L. C.; Burger, K.; Osipov, S. N.; Kolomiets, A. F.; Fokin, A. V.
Tetrahedron: Asymmetry 1994, 5, 1051–1060.
3
3
3H, OCH3), 6.97 (d, JH,H = 8.8 Hz, 2H Ar), 7.33 (d, JH,H = 8.8 Hz,