Organometallics
ARTICLE
br, 4H; CHdCH), 4.24 (s, br, 4H; CHdCH); 3.86 (d[AB], 2J(H,H) =
16.0 Hz, 2H; N-CH2-Py); 3.60 (s, 6H; Py-CH3). 13C NMR (125 MHz,
acetone-d6): δ 162.1 (Py); 160.6 (Py); 145.0 (Ardbcot-C1); 139.8 (Py-
C4); 133.5 (Ardbcot-C1); 132.7 (Ph-C2/6); 129.7 (Ph-C3/5); 129.7
(Ph-C4); 127.3 (Ardbcot-C2/3); 127.2 (Py-C5); 122.6 (Py-C3); 63.6
(N-CH2-Ph); 61.6 (N-CH2-Py); 30.0 (Py-CH3). The 13C NMR signals
of the double bond of dbcot could not be located due to the fluxional
behavior of this moiety. FABþ-MS: calcd for [4]þ (C37H35N3Rh) m/z
624.1883; found m/z 624.1886 (Δ = -0.5 ppm).
(8) (a) Sherry, A. E.; Wayland, B. B. J. Am. Chem. Soc. 1990,
112, 1259–1261. (b) Cui, W.; Zhang, X. P.; Wayland, B. B. J. Am. Chem.
Soc. 2003, 125, 4994–4995. (c) Cui, W.; Wayland, B. B. J. Am. Chem. Soc.
2004, 126, 8266–8274. (d) Puschmann, F. F.; Gr€utzmacher, H.; de
Bruin, B. J. Am. Chem. Soc. 2010, 132, 73–75.
(9) (a) Zhang, L.; Chan, K. S. Organometallics 2007, 26, 679–684.
(b) Dzik, W. I.; Reek, J. N. H.; de Bruin, B. Chem.—Eur. J. 2008,
14, 7594–7599.
(10) K€onigsmann, M.; Donati, N.; Stein, D.; Sch€onberg, H.; Harmer,
J.; Sreekanth, A.; Gr€utzmacher, H. Angew. Chem., Int. Ed. 2007, 46,
3567–3570.
(11) Hetterscheid, D. G. H.; Klop, M.; Kicken, R. J. N. A. M.; Smits,
J. M. M.; Reijerse, E. J.; de Bruin, B. Chem.—Eur. J. 2007, 13, 3386–3405.
(12) For an overwiew see: Hicks, R. G. Angew. Chem., Int. Ed. 2008,
47, 7393–7395.
(13) Copper: (a) Mankad, N. P.; Antholine, W. E.; Szilagyi, R. K.;
Peters, J. C. J. Am. Chem. Soc. 2009, 131, 3878–3880. Ruthenium:(b)
Miyazato, Y.; Wada, T.; Muckerman, J. T.; Fujita, E.; Tanaka, K. Angew.
Chem., Int. Ed. 2007, 46, 5728–5730. Nickel:(c) Adhikari, D.; Mossin,
S.; Basuli, F.; Huffman, J. C.; Szilagyi, R. K.; Meyer, K.; Mindiola, D. J. J.
Am. Chem. Soc. 2008, 130, 3676–3682. For aminyl radicals coordinated
to iridium and rhodium see ref 15.
(14) (a) Roth, J. P.; Yoder, J. C.; Won, T.-J.; Mayer, J. M. Science
2001, 294, 2524–2526. (b) Yoder, J. C.; Roth, J. P.; Gussenhoven, E. M.;
Larsen, A. S.; Mayer, J. M. J. Am. Chem. Soc. 2003, 125, 2629–2640. (c)
Mader, E. A.; Larsen, A. S.; Mayer, J. M. J. Am. Chem. Soc. 2004,
126, 8066–8067. (d) Mader, E. A.; Davidson, E. R.; Mayer, J. M. J. Am.
Chem. Soc. 2007, 129, 5153–5166. (e) Wu, A.; Mayer, J. M. J. Am. Chem.
Soc. 2008, 130, 14745–14754. (f) Mader, E. A.; Manner, V. W.; Markle,
T. F.; Wu, A.; Franz, J. A.; Mayer, J. M. J. Am. Chem. Soc. 2009,
131, 4335–4345.
(15) (a) B€uttner, T.; Geier, J.; Frison, G.; Harmer, J.; Calle, C.;
Schweiger, A.; Sch€onberg, H.; Gr€utzmacher, H. Science 2005,
307, 235–238. (b) Maire, P.; K€onigsmann, M.; Sreekanth, A.; Harmer,
J.; Schweiger, A.; Gr€utzmacher, H. J. Am. Chem. Soc. 2006,
128, 6578–6580. (c) Donati, N.; Stein, D.; B€uttner, T.; Sch€onberg,
H.; Harmer, J.; Anadaram, S.; Gr€utzmacher, H. Eur. J. Inorg. Chem.
2008, 4691–4703.
Synthesis of [Rh(K3-Bn-bla)(dbcot)](PF6)2 ([4](PF6)2).
[4]PF6 (89.4 mg, 0.116 mmol) and 29.4 mg of AgPF6 (0.116 mmol)
were dissolved in 3 mL of CH2Cl2, causing instant precipitation of
metallic silver and [4](PF6)2. Due to a rather low stability of [4](PF6)2,
attempts to isolate an analytically pure sample were not successful.
Hence for the reaction with base we used a ca. 1:1 mol mixture of
[4](PF6)2 and Ag black obtained after decanting the green supernatant
and drying the black-green powder in vacuo.
Reaction of Radical Species 12þ, 22þ, and 42þ with K2CO3
(ref 56). In a typical experiment 0.02 mmol of the metal complex 12þ
,
22þ, or 42þ (the isolated complexes were used in the case of 12þ and
22þ; in the case of 42þ a mixture with co-precipitated metallic silver was
used) was dissolved in 1 mL of acetone-d6 and stirred with 0.4 mmol of
anhydrous solid K2CO3. After the solution turned yellow, the recorded
NMR spectra showed quantitative formation of 1þ, 2þ, or 4þ,
respectively.
’ ASSOCIATED CONTENT
S
Supporting Information. Crystallographic information
b
(cif file) containing data for complexes [1](PF6), [2](PF6),
[2](PF6)2, and [3](PF6). The EPR spectra of 42þ and the
reaction of 12þ with DMPO. This material is available free of
’ AUTHOR INFORMATION
(16) (a) Hetterscheid, D. G. H. Ph.D. Thesis, Radboud University
Nijmegen, 2006. (b) Tejel, C.; Ciriano, M. A.; del Río, M. P.; van den
Bruele, F. J.; Hetterscheid, D. G. H.; Tsichlis i Spithas, N.; de Bruin, B. J.
Am. Chem. Soc. 2008, 130, 5844–5845. (c) Tejel, C.; Ciriano, M. A.; del
Río, M. P.; Hetterscheid, D. G. H.; Tsichlis i Spithas, N.; Smits, J. M. M.;
de Bruin, B. Chem.—Eur. J. 2008, 14, 10932–10936. (d) Tejel, C.; del
Río, M. P.; Ciriano, M. A.; Reijerse, E. J.; Hartl, F.; Zꢀaliꢁs, S.; Hetterscheid,
D. G. H.; Tsichlis i Spithas, N.; de Bruin, B. Chem.—Eur. J. 2009,
15, 11878–11889.
(17) Recently it was shown that replacement of cod ligand with
dbcot greatly improved the (air) stability of an iridium catalyst for allylic
substitutions: Spiess, S.; Welter, C.; Franck, G.; Taquet, J. -P.; Helmchen,
G. Angew. Chem., Int. Ed. 2008, 47, 7652–7655.
Corresponding Author
*Fax: (þ31) 20 5255604. E-mail: b.debruin@uva.nl.
’ ACKNOWLEDGMENT
We thank Han Peeters for measuring the FABþ-MS mass
spectrum. Financial support from the European Research Coun-
cil (ERC Grant Agreement 202886-CatCIR), NWO-CW (VIDI
grant 700.55.426), and the University of Amsterdam is gratefully
acknowledged.
(18) (a) Fernandez, M. J.; Rodriguez, M. J.; Oro, L. A.; Lahoz, F. J.
J. Chem. Soc., Dalton Trans. 1989, 2073–2076. (b) Alvarado, Y.; Boutry,
O.; Gutiꢀerrez, E.; Monge, A.; Nicasio, M. C.; Poveda, M. L.; Pꢀerez, P. J.;
Ruíz, C.; Bianchini, C.; Carmona, E. Chem.—Eur. J. 1997, 3, 860–873.
(19) Iimura, M.; Evans, D. R.; Flood, T. C. Organometallics 2003,
22, 5370–5373.
’ REFERENCES
(1) Whittaker, J. W. Chem. Rev. 2003, 103, 2347–2363.
(2) (a) Costas, M.; Mehn, M. P.; Jensen, M. P.; Que, L., Jr. Chem.
Rev. 2004, 104, 939–986. (b) Limberg, C. Angew. Chem., Int. Ed. 2003,
42, 5932–5954.
(20) Dzik, W. I.; Smits, J. M. M.; Reek, J. N. H.; de Bruin, B.
Organometallics 2009, 28, 1631–1643.
(3) Meunier, B.; de Visser, S. P.; Shaik, S. Chem. Rev. 2004,
104, 3947–3980.
(21) (a) Hermann, D.; Gandelman, M.; Rozenberg, H.; Shimon,
L. J. W.; Milstein, D. Organometallics 2002, 21, 812–818. (b) Friedrich,
A.; Ghosh, R.; Kolb, R.; Herdtweck, E.; Schneider, S. Organometallics
2009, 28, 708–718.
(4) Baik, M.-H.; Newcomb, M.; Friesner, R. A.; Lippard, S. J. Chem.
Rev. 2003, 103, 2385–2419.
(5) Stubbe, J.; Nocera, D. G.; Yee, C. S.; Chang, M. C. Y. Chem. Rev.
2003, 103, 2167–2201.
(6) (a) Gridnev, A. A.; Ittel, S. D. Chem. Rev. 2001, 101, 3611–3659.
(b) de Bruin, B.; Dzik, W. I.; Li, S.; Wayland, B. B. Chem.—Eur. J. 2009,
15, 4312–4320.
(7) Penoni, A.; Wanke, R.; Tollari, S.; Gallo, E.; Musella, D.; Ragaini,
F.; Demartin, F.; Cenini, S. Eur. J. Inorg. Chem. 2003, 1452–1460.
(22) Shorter metal-ligand bond distances are generally interpreted
to indicate stronger metal-ligand bond interactions. This however does
not always reflect the actual thermodynamic metal-ligand bond dis-
sociation (free) energies, which are also influenced by reorganization
and solvation effects. See for instance: Huang, J.; Haar, C. M.; Nolan,
1911
dx.doi.org/10.1021/om101157r |Organometallics 2011, 30, 1902–1913