The Journal of Organic Chemistry
ARTICLE
(5) Bucher, G.; Phillips, D. L.; Schr€oder, D.; Carpenter, B.; Guthrie,
J. P.; Shaik, S.; Tahara, T.; Warshel, A.; Michl, J.; Williams, I.; Ashfold,
M. N. R.; Pandey, R.; Meech, S. R.; Misra, R.; Henchman, R. H.;
Hutchings, G. J.; Buurma, N. J.; Bain, C. D.; Glowacki, D.; George,
M. W.; Pantos, G. D.; Cramer, C. J.; Lloyd-Jones, G. C.; Hunter, C. A.;
Varley, L. M.; Hillman, A. R.; Webb, S.; Philp, D.; Page, M. I. Faraday
Discuss. 2010, 145, 255.
(6) For previous work on Favorskii-type rearrangements in the gas
phase, see: (a) Dua, S.; Pollnitz, A. P.; Bowie, J. H. J. Chem. Soc., Perkin
Trans. 2 1993, 2235. See also:(b) Han, I. S.; Kim, C. K.; Kim, C. K.; Lee,
B. S.; Lee, I. J. Comput. Chem. 1997, 18, 1773.
(7) For review of anion rearrangements in the gas phase, see: (a)
Eichinger, P. C. H.; Dua, S.; Bowie, J. H. Int. J. Mass Spectrom. Ion Processes
1993, 133, 1. (b) Ahmad, M. R.; Kass, S. R. Aust. J. Chem. 2003, 56, 453.
(8) (a) Alcami, M.; Mꢁo, O.; Yan~ez, M. Mass Spectrom. Rev. 2001,
20, 195. (b) Schwarz, H. Int. J. Mass Spectrom. 2004, 237, 75. (c)
Roithovꢁa, J.; Schr€oder, D. Coord. Chem. Rev. 2009, 253, 666. (d)
Roithovꢁa, J.; Schr€oder, D. Chem. Rev. 2010, 110, 1170.
(9) For a promising example toward UV photochemistry in the gas
phase, see: Scuderi, D.; Maitre, P.; Rondino, F.; Le Barbu-Debus, K.;
Lepere, V.; Zehnacker-Rentien, A. J. Phys. Chem. A 2010, 114, 3306.
(10) Neutralization-reionization mass spectrometry has been used
to characterize the neutral products of ion/molecule reactions in the gas
phase, see: (a) Schr€oder, D.; S€ulzle, D.; Hruꢀsꢁak, J.; B€ohme, D. K.;
Schwarz, H. Int. J. Mass Spectrom. Ion Processes 1991, 110, 145. (b)
Schr€oder, D.; Schwarz, H. Helv. Chim. Acta 1992, 75, 1281. (c) Schr€oder,
D.; M€uller, J.; Schwarz, H. Organometallics 1993, 12, 1972. (d) Schr€oder,
D.; Schwarz, H.; Polarz, S.; Driess, M. Phys. Chem. Chem. Phys. 2005,
7, 1049. See also: (e) Li, S. H.; Mirabal, A.; Demuth, J.; W€oste, L.;
Siebert, T. J. Am. Chem. Soc. 2008, 130, 16832.
Heinemann, C.; Schwarz, H.; Harvey, J. N.; Dua, S.; Blanksby, S. J.;
Bowie, J. H. Chem.—Eur. J. 1998, 4, 2550. (c) Roithovꢁa, J.; Ricketts,
C. L.; Schr€oder, D.; Price, S. D. Angew. Chem., Int. Ed. 2007, 46, 9316. (d)
Feixas, F.; Ponec, R.; Schr€oder, D.; Roithovꢁa, J.; Fiꢀser, J.; Price, S. D.
J. Phys. Chem. A 2010, 114, 6681.
(18) For selected other examples of two-state scenarios with only
second row elements, see: (a) Janaway, G. A.; Zhong, M. L.; Gatev,
G. G.; Chabinyc, M. L.; Brauman, J. I. J. Am. Chem. Soc. 1997,
119, 11697. (b) Hu, J.; Hill, B. T.; Squires, R. R. J. Am. Chem. Soc.
1997, 119, 11699. (c) Yarkony, D. R. J. Phys. Chem. A 1998, 102, 5305.
(d) Cui, Q.; Morokuma, K.; Bowman, J. M.; Klippenstein, S. J. J. Chem.
Phys. 1999, 110, 9469. (e) Griesbeck, A.; Abe, M.; Bondock, S. Acc.
Chem. Res. 2004, 37, 919. (f) Contreras, R.; Galvan, M.; Oliva, M.;
Safont, V. S.; Andres, J.; Guerra, D.; Aizman, A. Chem. Phys. Lett. 2008,
457, 216.
(19) For solvent effects on the spin inversion of carbenes, see: (a)
Hess, G. C.; Kohler, B.; Likhotvorik, I.; Peon, J.; Platz, M. S. J. Am. Chem.
Soc. 2000, 122, 8087. (b) Wang, J.; Kubicki, J.; Peng, H.; Platz, M. S.
J. Am. Chem. Soc. 2008, 130, 6604.
(20) Givens, R. S.; Stensrud, K.; Conrad, P. G., II; Yousef, A. L.;
Perera, C.; Senadheera, S. N.; Heger, D.; Wirz, J. Can. J. Chem. 2011in
press.
(21) Tintaru, A.; Roithovꢁa, J.; Schro€der, D.; Charles, L.; Juꢀsinski, I.;
Glasovac, Z.; Eckert-Maksiꢁc, M. J. Phys. Chem. A 2008, 112, 12097.
(22) Cech, N. B.; Enke, C. G. Mass Spectrom. Rev. 2001, 20, 362.
(23) Schr€oder, D.; Weiske, T.; Schwarz, H. Int. J. Mass Spectrom.
2002, 219, 729.
(24) Trage, C.; Diefenbach, M.; Schr€oder, D.; Schwarz, H. Chem.—
Eur. J. 2006, 12, 2454.
(25) O’Hair, R. A. J. Chem. Commun. 2006, 1469.
(11) For a neutralization-reionization study of the related
acetolactone, see: Schr€oder, D.; Goldberg, N.; Zummack, W.; Schwarz,
H.; Poutsma, J. C.; Squires, R. R. Int. J. Mass Spectrom. Ion Processes 1997,
165/166, 71.
(26) (a) Armentrout, P. B. Int. J. Mass Spectrom. 2000, 200, 219. (b)
Ervin, K. M. Chem. Rev. 2001, 101, 391. (c) Narancic, S.; Bach, A.; Chen,
P. J. Phys. Chem. A 2007, 111, 7006. (d) Armentrout, P. B.; Ervin, K. M.;
Rodgers, M. T. J. Phys. Chem. A 2008, 112, 10071.
(12) (a) Roithovꢁa, J.; Schr€oder, D.; Schwarz, H. Angew. Chem., Int.
Ed. 2005, 44, 3092. (b) Roithovꢁa, J.; Schr€oder, D. Int. J. Mass Spectrom.
2007, 267, 134. (c) Milko, P.; Roithovꢁa, J.; Schr€oder, D.; Lemaire, J.;
Schwarz, H.; Holthausen, M. C. Chem.—Eur. J. 2008, 14, 4318. (d)
Milko, P.; Roithovꢁa, J.; Tsierkezos, N. G.; Schr€oder, D. J. Am. Chem. Soc.
2008, 130, 7186.
(27) O’Hair, R. A. J.; Vrkic, A. K.; James, P. F. J. Am. Chem. Soc. 2004,
126, 12173.
(28) (a) Rodgers, M. T.; Stanley, J. R.; Amunugama, R. J. Am. Chem.
Soc. 2000, 122, 10969. (b) Rannulu, N. S.; Rodgers, M. T. J. Phys. Chem.
A 2007, 111, 3465. (c) Than, S.; Maeda, H.; Irie, M.; Itoh, S.; Kikukawa,
K.; Mishima, K. J. Phys. Chem. A 2007, 111, 5988.
(13) With respect to the detection of formate and acetate as ionic
fragments, we note that the IT-MS has a default low mass cutoff at m/z
50. However, independently generated CH3COO- could be detected
and handled without problems and in the low-mass operation mode, also
HCOO- can be detected. In fact, traces of CH3COO- at m/z 59 were
observed upon CID of the acetate (X = CH3COO in Table 1), but the
abundance was much less than a percent of the other fragments and no
quantitative analysis of the energy dependence was possible.
(14) Although formation of 3 can occur directly from the anion, it is
important to distinguish this formally heterolytic þbond cleavage (i.e.,
-O-C6H4-C(O)-CH2-X f -O-C6H4-C(O)-CH2 þ X-) from the
more energy demanding homolytic bond cleavage of the neutral
phenacyl compound (i.e., HO-C6H4-C(O)-CH2-X f HO-C6H4-C-
(29) Schr€oder, D.; Engeser, M.; Bro€nstrup, M.; Daniel, C.; Spandl, J.;
Hartl, H. Int. J. Mass Spectrom. 2003, 228, 743.
(30) (a) Jagoda-Cwiklik, B.; Jungwirth, J.; Rulíꢀsek, L.; Milko, P.;
Roithovꢁa, J.; Lemaire, J.; Maitre, P.; Ortega, J. M.; Schr€oder, D.
ChemPhysChem 2007, 8, 1629. (b) Tyo, E. C.; Castleman, A. W., Jr.;
Schr€oder, D.; Milko, P.; Roithovꢁa, J.; Ortega, J. M.; Cinellu, M. A.;
Cocco, F.; Minghetti, G. J. Am. Chem. Soc. 2009, 131, 13009.
(31) Gaussian 03, Revision E.01; Gaussian, Inc., Wallingford, CT,
2004.
(32) Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007.
•
(O)-CH2 þ X•) often invoked in photolysis.
ꢀ
(15) (a) Srogl, J.; Hyvl, J.; Rꢁevꢁesz, A.; Schr€oder, D. Chem. Commun.
2009, 3463. (b) Tsierkezos, N. G.; Buchta, M.; Holꢁy, P.; Schr€oder, D.
Rapid Commun. Mass Spectrom. 2009, 23, 1550. (c) Schr€oꢀder, D.;
Duchꢁaꢀckovꢁa, L.; Juꢀsinski, I.; Eckert-Maksiꢁc, M.; Heyda, J.; Tuma, L.;
Jungwirth, P. Chem. Phys. Lett. 2010, 490, 14. (d) Rꢁevꢁesz, A.; Milko, P.;
ꢀ
Zabka, J.; Schr€oder, D.; Roithovꢁa, J. J. Mass Spectrom. 2010, 45, 1246. (e)
Zins, E.-L.; Pepe, C.; Schr€oder, D. J. Mass Spectrom. 2010, 45, 1253.
(16) (a) Schr€oder, D.; Shaik, S.; Schwarz, H. Acc. Chem. Res. 2001,
33, 139. (b) Schwarz, H. Int. J. Mass Spectrom. 2004, 237, 75. (c) Harvey,
J. N.; Poli, R.; Smith, K. M. Coord. Chem. Rev. 2003, 238, 347. (d) Shaik,
S.; Hirao, H.; Kumar, D. Acc. Chem. Res. 2007, 40, 532. See also:(e)
Yarkony, D. R. J. Phys. Chem. 1996, 100, 18612.
(17) (a) Aschi, M.; Harvey, J. N.; Schalley, C. A.; Schr€oder, D.;
Schwarz, H. J. Chem. Soc., Chem. Commun. 1998, 531. (b) Schr€oder, D.;
2186
dx.doi.org/10.1021/jo1025223 |J. Org. Chem. 2011, 76, 2180–2186