Immunoprecipitation assay of the p53-DNA binding with magnetic
beads
Notes and references
1 (a) M. Famulok, Curr. Opin. Mol. Ther., 2005, 7, 137–143; (b) M.
Famulok, J. S. Hartig and G. Mayer, Chem. Rev., 2007, 107, 3715–3743;
(c) A. Peracchi, ChemBioChem, 2005, 6, 1316–1322; (d) A. Condon,
Nat. Rev. Genet., 2006, 7, 565–575; (e) F. E. Alemdaroglu and A.
Herrmann, Org. Biomol. Chem., 2007, 5, 1311–1320; (f) U. Feldkamp
and C. M. Niemeyer, Angew. Chem., Int. Ed., 2006, 45, 1856–1876.
2 Recent review: M. Hocek and M. Fojta, Org. Biomol. Chem., 2008, 6,
2233–2241.
3 Recent examples: (a) T. Gourlain, A. Sidorov, N. Mignet, S. J. Thorpe,
S. E. Lee, J. A. Grasby and D. M. Williams, Nucleic Acids Res., 2001,
29, 1898–1905; (b) L. H. Thoresen, G.-S. Jiao, W. C. Haaland, M. L.
Metzker and K. Burgess, Chem.–Eur. J., 2003, 9, 4603–4610; (c) S.
Ja¨ger, G. Rasched, H. Kornreich-Leshem, M. Engeser, O. Thum and
M. Famulok, J. Am. Chem. Soc., 2005, 127, 15071–15082; (d) M.
Kuwahara, J. Nagashima, M. Hasegawa, T. Tamura, R. Kitagata,
K. Hanawa, S. Hososhima, T. Kasamatsu, H. Ozaki and H. Sawai,
Nucleic Acids Res., 2006, 34, 5383–5394; (e) A. Shoji, T. Hasegawa, M.
Kuwahara, H. Ozaki and H. Sawai, Bioorg. Med. Chem. Lett., 2007,
17, 776–779; (f) S. Obeid, M. Yulikow, G. Jeschke and A. Marx, Angew.
Chem., Int. Ed., 2008, 47, 6782–6785; (g) B. Holzberger and A. Marx,
Bioorg. Med. Chem., 2009, 17, 3653–3658; (h) V. Borsenberger and S.
Howorka, Nucleic Acids Res., 2009, 37, 1477–1485; (i) V. Borsenberger,
M. Kukwikila and S. Howorka, Org. Biomol. Chem., 2009, 7, 3826–
3835; (j) P. M. E. Gramlich, S. Warncke, J. Gierlich and T. Carell,
Angew. Chem., Int. Ed., 2008, 47, 3442–3444; (k) A. Baccaro and A.
Marx, Chem.–Eur. J., 2010, 16, 218–226.
(MBIP assay14) The p53 immune complexes were prepared by
mixing of Bp53-10.1 antibody16 with the protein at a molar ratio
of 16 : 1 in binding buffer (50 mM KCl, 5 mM Tris and 0.01%
Triton X-100, pH 7.6), followed by a 20-min incubation. Then,
approximately 200 ng of the tail-labelled duplexes (prepared by
annealing of equivalent amounts of tail-labelled and comple-
mentary strands, purified using QIAquick Nucleotide Removal
Kit, Qiagen) and 300 ng of scDNA pBSK(-) were mixed with
the given immune complex (p53 tetramer/scDNA molar ratio
was 2.5 : 1) and incubated in the binding buffer for 30 min on
ice. Magnetic beads MBG (12 ml of the stock suspension per
sample) were washed three times with 100 ml of the binding
buffer. The beads were separated from the supernatant using
magnetic particle concentrator. Then the binding reaction mixture
was added and incubated with the beads for 30 min at 10 ◦C
whilst shaking mildly. Finally, after triplicate washing with the
binding buffer, DNA was released from the MBG-confined p53
complexes through a 5-min incubation at 65 ◦C in 20 ml of
0.5 M NaCl.
4 P. Bra´zdilova´, M. Vra´bel, R. Pohl, H. Pivonˇkova´, L. Havran, M. Hocek
and M. Fojta, Chem.–Eur. J., 2007, 13, 9527–9533.
Electrochemical analysis
5 H. Cahova´, L. Havran, P. Bra´zdilova´, H. Pivonˇkova´, R. Pohl, M. Fojta
and M. Hocek,, Angew. Chem., Int. Ed., 2008, 47, 2059–2062.
The TdT tail-labelled products were analyzed by using ex situ
(adsorptive transfer stripping) cyclic voltammetry (AdTS CV)
using hanging mercury drop electrode (HMDE) or meniscus-
modified solid amalgam electrode17 (m-AgSAE, prepared and
treated as described18), or by ex situ square wave voltammetry
(AdTS SWV) using basal-plane pyrolytic graphite electrode (PGE;
prepared and treated as described19). DNA was accumulated
at the electrode surface from 5 mL aliquots containing 0.3 M
NaCl for 60 s. Then the electrode was rinsed by deionized
water and was placed into the electrochemical cell. CV settings:
initial potential 0.0 V, switching potential -1.85 V, final poten-
tial 0.0 V, scan rate 1 V s-1, step potential 5 mV, in 0.3 M
ammonium formate with 0.05 M sodium phosphate, pH 6.9 as
a supporting electrolyte. SWV settings: initial potential 0.5 V,
final potential -1.5 V, frequency 200 Hz, amplitude 25 mV, in
0.2 M acetate buffer, pH 5. The measurements were performed
at ambient temperature by using Autolab analyzer (Metrohm
Autolab, The Netherlands) in connection with VA-stand 663
(Metohm, Switzerland) in a three-electrode setup (with the
HMDE, mAgSAE or PGE as working electrode, Ag/AgCl/3 M
KCl as reference, and platinum wire as counter electrode). Baseline
correction of chosen curves was performed using GPES 4 software
(EcoChemie).
ˇ
6 M. Vra´bel, P. Hora´kova´, H. Pivonˇkova´, L. Kalachova, H. Cernocka´,
ˇ
H. Cahova´, R. Pohl, P. Sebest, L. Havran, M. Hocek and M. Fojta,
Chem. Eur. J., 2009, 15, 1144–1154.
ˇ
7 V. Raindlova´, R. Pohl, M. Sanda and M. Hocek, Angew. Chem., Int.
Ed., 2010, 49, 1064–1066.
8 A. M. Michelson and S. H. Orkin, J. Biol. Chem., 1982, 257, 14773–
14782.
9 (a) M. Brazdova, T. Quante, L. Togel, K. Walter, C. Loscher, V. Tichy,
L. Cincarova, W. Deppert and G. V. Tolstonog, Nucleic Acids Res.,
2009, 37, 1486–00; (b) P. Horakova, E. Simkova, Z. Vychodilova, M.
Brazdova and M. Fojta, Electroanalysis, 2009, 21, 1723–1729.
10 (a) E. Palecek and M. Fojta, Talanta, 2007, 74, 276–290; (b) M. Fojta, P.
Kostecka, M. Trefulka, L. Havran and E. Palecek, Anal. Chem., 2007,
79, 1022–1029.
11 (a) H. Pivonkova, P. Sebest, P. Pecinka, O. Ticha, K. Nemcova, M.
Brazdova, E. B. Jagelska, V. Brazda and M. Fojta, Biochem. Biophys.
Res. Commun., 2010, 393, 894–899; (b) K. Nemcova, L. Havran, P.
Sebest, M. Brazdova, H. Pivonkova and M. Fojta, Anal. Chim. Acta,
2010, 668, 166–170.
12 B. Yosypchuk and J. Barek, Crit. Rev. Anal. Chem., 2009, 39, 189–203.
13 (a) E. Palecek and F. Jelen, in Electrochemistry of nucleic acids and
proteins. Towards electrochemical sensors for genomics and proteomics.,
ed. E. Palecek, F. Scheller and J. Wang, Elsevier, Amsterdam, 2005,
vol. 1, pp. 74–174; (b) M. Fojta, F. Jelen, L. Havran and E. Palecek,
Curr. Anal. Chem., 2008, 4, 250–262.
14 (a) H. Pivonkova, P. Sebest, P. Pecinka, O. Ticha, K. Nemcova, M.
Brazdova, E. B. Jagelska, V. Brazda and M. Fojta, Biochem. Biophys.
Res. Commun., 2010, 393, 894–899; (b) E. B. Jagelska, V. Brazda, P.
Pecinka, E. Palecek and M. Fojta, Biochem. J., 2008, 412, 57–63; (c) K.
Nemcova, L. Havran, P. Sebest, M. Brazdova, H. Pivonkova and M.
Fojta, Anal. Chim. Acta, 2010, 668, 166–170.
Acknowledgements
15 M. Brazdova, J. Palecek, D. I. Cherny, S. Billova, M. Fojta, P. Pecinka,
B. Vojtesek, T. M. Jovin and E. Palecek, Nucleic Acids Res., 2002, 30,
4966–4974.
16 S. Pospisilova, V. Brazda, J. Amrichova, R. Kamermeierova, E. Palecek
and B. Vojtesek, J. Immunol. Methods, 2000, 237, 51–64.
17 B. Yosypchuk and J. Barek, Crit. Rev. Anal. Chem., 2009, 39, 189–203.
18 R. Fadrna, K. Kucharikova-Cahova, L. Havran, B. Yosypchuk and M.
Fojta, Electroanalysis, 2005, 17, 452–459.
This work was supported by the Academy of Sciences of the
Czech Republic (Z4 055 0506, Z5 004 0507 and Z5 004 0702),
the Ministry of Education (LC06035, LC512), Grant Agency of
the Academy of Sciences of the Czech Republic (IAA400040901),
and by Gilead Sciences, Inc. (Foster City, CA, U. S. A.). The
authors thank Dr Marie Bra´zdova´ for donation of the p53
protein.
19 M. Fojta, L. Havran, R. Kizek and S. Billova, Talanta, 2002, 56, 867–
874.
This journal is
The Royal Society of Chemistry 2011
Org. Biomol. Chem., 2011, 9, 1366–1371 | 1371
©