The Journal of Organic Chemistry
ARTICLE
through a sequential three-component reaction of primary
aliphatic amines, active methylene compounds, and DDs. This
method circumvents some of the problems and limitations
associated with frequently used procedures, is advantageous in
terms of simplicity and mildness, and hopefully could find wide
application in the synthesis of complex pyrrole-containing com-
pounds. Notably, this environmentally friendly single flask
approach avoids transition-metal catalysts, employs readily avail-
able materials, and occurs with complete control of pathway
selectivity. Current studies to extend this methodology, including
the use of other nucleophilic partners, are actively underway.
(2) (a) Parson, P. J.; Penkett, C. S.; Shell, A. J. Chem. Rev. 1996,
96, 195–206. (b) Tietze, L. F. Chem. Rev. 1996, 96, 115–136. (c) Tietze,
L. F.; Beifuss, U. Angew. Chem., Int. Ed. Engl. 1993, 32, 131–163.
(3) For the most recent review, see: (a) Catellani, M.; Motti, E.;
Della Ca’, N. Acc. Chem. Res. 2008, 41, 1512–1522. (b) Arns, S.;
Barriault, L. Chem. Commun. 2007, 2211–2221. (c) Nicolaou, K. C.;
Edmonds, D. J.; Bulger, P. G. Angew. Chem., Int. Ed. 2006, 45, 7134–
7186. (d) Overman, L. E.; Pennington, L. D. J. Org. Chem. 2003,
68, 7143–7157.
(4) For some recent reviews, see: (a) Estꢁevez, V.; Villacampa, M.;
Menꢁendez, C. Chem. Soc. Rev. 2010, 39, 4402–4421. (b) Fan, H.; Peng,
J.; Hamann, M. T.; Hu, J.-F. Chem. Rev. 2008, 108, 264–287. (c)
Schmuck, C.; Rupprecht, D. Synthesis 2007, 3095–3110. (d) Walsh,
C. T.; Garneau-Tsodikova, S.; Howard-Jones, A. R. Nat. Prod. Rep. 2006,
23, 517–531. (e) Banwell, M. G.; Goodwin, T. E.; Ng, S.; Smith, J. A.;
Wong, D. J. Eur. J. Org. Chem. 2006, 3043–3060. (f) F€urstner, A. Angew.
Chem., Int. Ed. 2003, 42, 3582–3603. (g) Hoffmann, H.; Lindel, T.
Synthesis 2003, 1753ꢀ1783. For examples of pyrroles in natural
products, see: (a) Bellina, F.; Rossi, R. Tetrahedron 2006, 62,
7213–7256. (b) F€urstner, A. Synlett 1999, 1523–1533. (c) Sundberg,
R. J. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees,
C. W., Scriven, E. F. V., Eds.; Pergamon Press: Oxford, 1996; Vol. 2,
p 119. (d) Gossauer, A. In Houben-Weyl, Methoden der Organischen
Chemie; Kreher, R., Ed.; G. Thieme Verlag: Stuttgart, 1994; Suppl Series
E6a, p 556. (e) Gossauer, A. Die Chemie der Pyrrole; Springer Verlag:
Berlin, 1974. Examples of pyrroles in medicinal chemistry and pharma-
cology: (a) Lehuꢁedꢁe., J.; Fauconneau, B.; Barrier, L.; Ourakow, M.;
Piriou, A.; Vierfond, J.-M. Eur. J. Med. Chem. 1999, 34, 991–996.
(b) Gribble, G. W. In Comprehensive Heterocyclic Chemistry II; Katritzky,
A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon Press: Oxford, 1996;
Vol. 2, p 207. Examples of pyrroles in material science: see: (a)
Berlin, A.; Vercelli, B.; Zotti, G. Polym. Rev. 2008, 48, 493–530. (b)
Higgins, S. J. Chem. Soc. Rev. 1997, 26, 247–258. (c) MacDiarmid, A. G.
Synth. Met. 1997, 84, 27–34.
’ EXPERIMENTAL SECTION
General Methods. Reagent and solvent purification, work up
procedures, and analyses were performed in general as described in
Supporting Information.
General Procedure for the Catalyst- and Solvent-free Sequential
Three-Component Reaction of Primary Amines 1, 1,3-Dicarbonyl
Compounds 2, and DDs 3. Synthesis of N-Alkylpyrroles 4. A mixture
of amine 1 (1 mmol) and active methylene compound 2 (1 mmol) was
stirred under solvent-free conditions at room temperature for 15 min to
1
48 h (TLC and H NMR monitoring). Then, DD 325 (1 mmol) was
added, and the reaction was stirred until the disappearance of the starting
materials (over 5ꢀ10 min, monitored by TLC). The crude mixture was
purified by column chromatography on silica gel to afford the product 4.
Spectroscopic data for representative alkylpyrroles are given below.
Ethyl 1-Benzyl-4-[(dimethylamino)carbonyl]-2,5-dimethyl-1H-pyr-
role-3-carboxylate (4aaa). N-Alkylpyrrole 4aaa was isolated by column
1
chromatography (ethyl acetate) in 65% yield. White waxy; H NMR
(400 MHz, DMSO-d6, 25 °C): δ = 1.17 (t, J = 7.2 Hz, 3H), 1.94 (s, 3H),
2.37 (s, 3H), 2.76 (s, 3H), 2.91 (s, 3H), 4.01ꢀ4.15 (m, 2H), 5.15 (s,
2H), 6.91 (d, J = 7.2 Hz, 2H), 7.25 (t, J = 7.2 Hz, 1H), 7.34 (t, J = 7.2 Hz,
2H); 13C NMR (100 MHz, DMSO-d6, 25 °C): δ = 10.0 (q), 10.9 (q),
14.1 (q), 34.0 (q), 37.7 (q), 46.2 (t), 58.8 (t), 108.4 (s), 117.5 (s), 125.6
(d), 127.2 (d), 128.9 (d), 134.9 (s), 137.1 (s), 163.8 (s), 167.1 (s); IR
(nujol): νmax = 1701, 1632, 1545, 1262, 1162, 1084 cmꢀ1; MS m/z (%):
328 (Mþ) (55), 313 (5), 284 (100), 268 (4), 256 (43), 240 (22), 237
(17), 211 (11). Anal. Calcd for C19H24N2O3 (328.41): C 69.49, H 7.37,
N 8.53. Found: C 69.61, H 7.26, N 8.42.
(5) Hantzsch, A. Ber. Dtsch. Chem. Ges. 1890, 23, 1474–1476.
(6) Knorr, L. Chem. Ber. 1884, 17, 1635–1642.
(7) Paal, C. Chem. Ber. 1885, 18, 367–371.
(8) For recent syntheses, see: (a) Morin, M. S. T.; St-Cyr, D. J.;
Arndtsen, B. A. Org. Lett. 2010, 12, 4916–4919. (b) Benedetti, E.; Lemiꢁere,
G.; Chapellet, L.-L.; Penoni, A.; Palmisano, G.; Malaria, M.; Goddard, J.-P.;
Fensterbank, L. Org. Lett. 2010, 12, 4396–4399. (c) Donohoe, T. J.; Race,
N. J.; Bower, J. F.; Callens, C. K. A. Org. Lett. 2010, 12, 4094–4097. (d) Li,
Q.; Fan, A.; Lu, Z.; Cui, Y.; Lin, W.; Jia, Y. Org. Lett. 2010, 12, 4066–4069.
(e) Wang, H.-Y.; Mueller, D. S.; Sachwani, R. M.; Londino, H. N. Org. Lett.
2010, 12, 2290–2293. (f) Maiti, S.; Biswas, S.; Jana, U. J. Org. Chem. 2010,
75, 1674–1683. (g) Saito, A.; Konishi, T.; Hanzawa, Y. Org. Lett. 2010,
12, 372–374. (h) Fu, X.; Chen, J.; Li, G.; Liu, Y. Angew.Chem., Int. Ed. 2009,
48, 5500–5504. (i) Pahadi, N. K.; Paley, M.; Jana, R.; Waetzig, S. R.; Tunge,
J. A. J. Am. Chem. Soc. 2009, 131, 16626–16627. (j) Wang, J.-Y.; Wang,
X.-P.; Yu, Z.-S.; Yu, W. Adv. Synth. Catal. 2009, 351, 2063–2066. (k) Egi,
M.; Azechi, K.; Akai, S. Org. Lett. 2009, 11, 5002–5005. (l) Ciez_, D. Org.
Lett. 2009, 11, 4282–4285. (m) Blangetti, M.; Deagostino, A.; Prandi, C.;
Tabasso, S.; Venturello, P. Org. Lett. 2009, 11, 3914–3917. (n) Merkul, E.;
Boersch, C.; Frank, W.; M€uller, T. J. J. Org. Lett. 2009, 11, 2269–2272.
(o) Ackermann, L.; Sandmann, R.; Kaspar, T. Org. Lett. 2009,
11, 2031–2034. (p) Fontaine, P.; Masson, G.; Zhu, J. Org. Lett. 2009,
11, 1555–1558. (q) Kiren, S.; Hong, X.; Leverett, C. A.; Padwa, A. Org. Lett.
2009, 11, 1233–1235. (r) Kim, Y.; Kim, J.; Park, S. B. Org. Lett. 2009,
11, 17–20.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental and characteriza-
b
tion details. This material is available free of charge via the
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: gianfranco.favi@uniurb.it.
’ ACKNOWLEDGMENT
This work was supported by the financial assistance from the
Ministero dell’Universitꢀa, dell’Istruzione e della Ricerca (MIUR)ꢀ
Roma and the Universitꢀa degli Studi di Urbino “Carlo Bo”.
(9) (a) Bhatt, U.; Duffy, B. C.; Guzzo, P. R. Synth. Commun. 2007,
37, 2793–2806. (b) Galliford, C. V.; Scheidt, K. A. J. Org. Chem. 2007,
72, 1811–1813.
(10) Carboxylates provide anchoring points for TiO2 surfaces with
strong binding affinities: Gallopini, E. Coord. Chem. Rev. 2004,
248, 1283–1297.
’ REFERENCES
(1) (a) Tietze, L. F.; Brasche, G.; Gericke, K. M. Domino Reaction in
Organic Synthesis; Wiley-VCH: Weinheim, 2006. (b) Ho, T. L. Tandem
Organic Reactions; John Wiley & Sons: New York, 1992.
(11) Enamine in organocatalysis: (a) Melchiorre, P.; Marigo, M.;
Carlone, A.; Bartoli, G. Angew. Chem., Int. Ed. 2008, 47, 6138–6171. (b)
Enders, D.; Niemeier, O.; Henseler, A. Chem. Rev. 2007, 107,
2865
dx.doi.org/10.1021/jo200287k |J. Org. Chem. 2011, 76, 2860–2866