cheaper and more convenient alternative form of catalysis
was not often used in arylÀP bonds formation.7
limited protocols for the direct coupling of arylboronic
acid with secondary phosphonates have been published.12
Here, we report a more convenient and inexpensive
copper-catalyzed method for the synthesis of aryl phos-
phonates. The advantage of this method was that the
coupling reaction could be performed under milder con-
ditions compared to that of the classical Hirao arylation
protocols.4,5
Recent reinvestigation of Chan and Lam8 type chemis-
try showed that many of the carbonÀheteroatom bond
formations may be carried out using boronic acids and
cupric acetate [Cu(OAc)2] as the catalyst. Although the
majority of efforts have been focused on the formation
of carbonÀnitrogen,9 Àoxygen,10 and Àsulfur bonds,11
(5) (a) Montchamp, J.-L.; Dumond, Y. R. J. Am. Chem. Soc. 2001,
123, 510. (b) Prim, D.; Campagne, J.-M.; Joseph, D.; Andrioletti, B.
Tetrahedron 2002, 58, 2041. (c) Schwan, A. L. Chem. Soc. Rev. 2004, 33,
218. (d) Jean-Luc, M. J. Organomet. Chem. 2005, 690, 2388. (e) Julienne,
D.; Lohier, J. F.; Delacroix, O.; Gaumont, A. C. J. Org. Chem. 2007, 72,
2247. (f) Kalek, M.; Stawinski, J. Organometallics 2007, 26, 5840.
(g) Kalek, M.; Ziadi, A.; Stawinski, J. Org. Lett. 2008, 10, 4637. (h) Kohler,
M. C.; Sokol, J. G.; Stockland, R. A., Jr. Tetrahedron Lett. 2009, 50, 457.
(i) Kalek, M.; Jezowska, M.; Stawinski, J. Adv. Synth. Catal. 2009, 351,
3207. (j) Luo, Y.; Wu, J. Organometallics 2009, 28, 6823. (k) Tappe, F. M. J.;
Trepohl, V. T.; Oestreich, M. Synthesis 2010, 3037.
(6) For reviews on copper-catalyzed cross-couplings, see: (a) Siemsen,
P.; Livingston, R. C.; Diederich, F. Angew. Chem., Int. Ed. 2000, 39,
2632. (b) Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M.
Chem. Rev. 2002, 102, 1359. (c) Finet, J.-P.; Fedorov, A. Y.; Combes, S.;
Boyer, G. Curr. Org. Chem. 2002, 6, 597. (d) Ley, S. V.; Thomas, A. W.
Angew. Chem., Int. Ed. 2003, 42, 5400. (e) Beletskaya, I. P.; Cheprakov,
A. V. Coord. Chem. Rev. 2004, 248, 2337. (f) Evano, G.; Blanchard, N.;
Toumi, M. Chem. Rev. 2008, 108, 3054. (g) Ma, D.; Cai, Q. Acc. Chem.
Res. 2008, 41, 1450. (h) Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc.
Chem. Res. 2009, 42, 1074.
(7) (a) Kaye, S.; Fox, J. M.; Hicks, F. A.; Buchwald, S. L. Adv. Synth.
Catal. 2001, 343, 789. (b) Gelman, D.; Jiang, L.; Buchwald, S. L. Org.
Lett. 2003, 5, 2315. (c) Becker, J. J.; Gagne, M. R. Organometallics 2003,
22, 4984. (d) Van Allen, D.; Venkataraman, D. J. Org. Chem. 2003, 68,
4590. (e) Beletskaya, I. P.; Cheprakov, A. V. Coord. Chem. Rev. 2004,
248, 2337. (f) Thielges, S.; Bisseret, P.; Eustache, J. Org. Lett. 2005, 7,
681. (g) Huang, C.; Tang, X.; Fu, H.; Jiang, Y.; Zhao, Y. J. Org. Chem.
2006, 71, 5020. (h) Rao, H.; Jin, Y.; Fu, H.; Jiang, Y.; Zhao, Y. Chem.;
Eur. J. 2006, 12, 3636. (i) Niu, M.; Fu, H.; Jiang, Y.; Zhao, Y. Chem.
Commun. 2007, 272. (j) Gao, Y.; Wang, G.; Chen, L.; Xu, P.; Zhao, Y.;
Zhou, Y.; Han, L.-B. J. Am. Chem. Soc. 2009, 131, 7956.
Table 1. Optimization of Copper Sourcea
entry
catalyst
yield (%)b
1
2
Cu(OAc)2
Cu(OAc)2
CuO
5c
35
trace
28
7
3
4
CuCl2
CuBr2
Cu(OTf)2
CuCl
5
6
56
40
14
43
75d
7
8
CuBr
9
CuI
10
Cu2O
a Reaction conditions: 1a (1 mmol), 2a (0.5 mmol), copper salt
(0.05 mmol), triethylamine (1.5 mmol), 1,10-phenanthroline (0.05
mmol) in 2 mL of CH2Cl2 at room temperature in air, 24 h. b Isolated
yield based on H-phosphonate diester 2a. c Copper salt (0.5 mmol),
without 1,10-phenanthroline. d Copper salt (0.25 mmol).
(8) (a) Lam, P. Y. S.; Clark, C. G.; Saubern, S.; Adams, J.; Winters,
M. P.; Chan, D. M. T.; Combs, A. Tetrahedron Lett. 1998, 39, 2941.
(b) Combs, A. P.; Saubern, S.; Rafalski, M.; Lam, P. Y. S. Tetrahedron
Lett. 1999, 40, 1623. (c) Lam, P. Y. S.; Vincent, G.; Clark, C. G.;
Deudon, S.; Jadhav, P. K. Tetrahedron Lett. 2001, 42, 3415. (d) Collman,
J. P.; Zhong, M.; Zhang, C.; Costanzo, S. J. Org. Chem. 2001, 66, 7892.
(9) (a) Mederski, W. W. K. R.; Lefort, M.; Germann, M.; Kux, D.
Tetrahedron 1999, 55, 12757. (b) Combs, A. P.; Saubern, S.; Rafalski,
M.; Lam, P. Y. S. Tetrahedron Lett. 1999, 40, 1623. (c) Collman, J. P.;
Zhong, M. Org. Lett. 2000, 2, 1233. (d) Antilla, J. C.; Buchwald, S. L.
Org. Lett. 2001, 3, 2077. (e) Lam, P. Y. S.; Vincent, G.; Bonne, D.; Clark,
C. G. Tetrahedron Lett. 2003, 44, 4927. (f) Ley, S. V.; Thomas, A. W.
Angew. Chem., Int. Ed. 2004, 43, 1043. (g) Moessner, C.; Bolm, C. Org.
Lett. 2005, 7, 2667. (h) Jacobsen, M. F.; Knudsen, M. M.; Gothelf, K. V.
J. Org. Chem. 2006, 71, 9183. (i) Bolshan, Y.; Batey, R. A. Angew.
Chem., Int. Ed. 2008, 47, 2109. (j) He, C.; Chen, C.; Cheng, J.; Liu, C.;
Liu, W.; Li, Q.; Lei, A. W. Angew. Chem., Int. Ed. 2008, 47, 6414.
(k) Tsuritani, T.; Strotman, N. A.; Yamamoto, Y.; Kawasaki, M.; Yasuda,
N.; Mase, T. Org. Lett. 2008, 10, 1653. (l) Rao, H.; Fu, H.; Jiang, Y.; Zhao,
Y. Angew. Chem., Int. Ed. 2009, 48, 1114.
(10) (a) Chan, D. M. T.; Monaco, K. L.; Wang, R.-P.; Winters, M. P.
Tetrahedron Lett. 1998, 39, 2933. (b) Evans, D. A.; Katz, J. L.; West,
T. R. Tetrahedron Lett. 1998, 39, 2937. (c) Jung, M. E.; Lazarova, T. I.
J. Org. Chem. 1999, 64, 2976. (d) Evans, D. A.; Katz, J. L.; Peterson,
G. S.; Hintermann, T. J. Am. Chem. Soc. 2001, 123, 12411. (e) Petrassi,
H. M.; Sharpless, K. B.; Kelly, J. W. Org. Lett. 2001, 3, 139. (f) Decicco,
C. P.; Song, Y.; Evans, D. A. Org. Lett. 2001, 3, 1029. (g) Deng, H.; Jung,
J.-K.; Liu, T.; Kuntz, K. W.; Snapper, M. L.; Hoveyda, A. H. J. Am.
Chem. Soc. 2003, 125, 9032. (h) McKinley, N. F.; O’Shea, D. F. J. Org.
Chem. 2004, 69, 5087. (i) Tzschucke, C. C.; Murphy, J. M.; Hartwig, J. F.
Org. Lett. 2007, 9, 761. (j) Shade, R. E.; Alan, M.; Hyde, A. M.; Olsen,
J.-C.; Merlic, C. A. J. Am. Chem. Soc. 2010, 132, 1202.
First, the reaction was performed under “classical” ChanÀ
Lam conditions, using 1 equiv of Cu(OAc)2, 2 equiv of
phenylboronic acid 1a, 1 equiv of H-phosphonate diester
2a, and 3 equiv of triethylamine at room temperature in
CH2Cl2. After 24 h, the desired PÀC product was formed
in a 5% yield and 31P NMR spectroscopy showed the
starting material disappeared (Table 1, entry 1). These
results indicated that the cross-coupling was feasible, and
hence a deeper study of the reaction was conducted. It has
been demonstrated that certain additives could be em-
ployed to enhance the efficiency of copper-catalyzed reac-
tions.7,13 Therefore, we decided to test commercially avail-
able 1,10-phenanthroline as a ligand for the copper-cata-
lyzed phosphonation of aryl boronic acid. Various copper
salts were tested for the proposed reaction using 1,10-
phenanthroline as a ligand in air at rt (Table 1, entries
2À10). Cu2O, which is relatively inexpensive and easy to
(12) (a) Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42,
5400. (b) Andaloussi, M.; Lindh, J.; Savmarker, J.; Sjoberg, P. J. R.;
Larhed, M. Chem.;Eur. J. 2009, 15, 13069. (c) Qiao, J.; Lam, P.
Synthesis 2011, 829.
(13) (a) Ma, D.; Zhang, Y.; Yao, J.; Wu, S.; Tao, F. J. Am. Chem.
Soc. 1998, 120, 12459. (b) Klapars, A.; Antilla, J. C.; Huang, X.;
Buchwald, S. L. J. Am. Chem. Soc. 2001, 123, 7727. (c) Altman, R. A.;
Koval, E. D.; Buchwald, S. L. J. Org. Chem. 2007, 72, 6190. (d) Martin,
R.; Buchwald, S. Acc. Chem. Res. 2008, 41, 1461. (e) Evano, G.;
Blanchard, N.; Toumi, M. Chem. Rev. 2008, 108, 3054. (f) Monnier,
F.; Taillefer, M. Angew. Chem., Int. Ed. 2009, 48, 6954.
(11) (a) Herradura, P. S.; Pendola, K. A.; Guy, R. K. Org. Lett.
2000, 2, 2019. (b) Savarin, C.; Srogl, J.; Liebeskind, L. S. Org. Lett.
2002, 4, 4309. (c) Lengar, A.; Kappe, C. O. Org. Lett. 2004, 6, 771.
(d) Prokopcova, H.; Kappe, C. O. J. Org. Chem. 2007, 72, 4440. (e) Kar,
A.; Sayyed, I. A.; Lo, W. F.; Kaiser, H. M.; Beller, M.; Tse, M. K. Org.
Lett. 2007, 9, 3405.
Org. Lett., Vol. 13, No. 8, 2011
2111