1554
J . Org. Chem. 2000, 65, 1554-1557
Alkenylsilanes are absent among the array of organo-
metallic compounds used in palladium-catalyzed cross-
coupling reactions with arenediazonium salts. Actually,
Kikukawa and co-workers reported a palladium-cata-
lyzed aryldesilylation of alkenylsilanes by arenediazo-
nium salts,10 but the lack of regio-and stereospecificity
in this reaction is more compatible with an addition-
elimination mechanism rather than with a cross-coupling
process.
A Novel Regio- a n d Ster eoselective F or m a l
Cr oss-Cou p lin g Rea ction of Un sa tu r a ted
Sila n es w ith Ar en ed ia zon iu m
Tetr a flu or obor a tes
Francesco Babudri, Gianluca M. Farinola,
Francesco Naso,* and Daniela Panessa
Centro CNR di Studio sulle Metodologie Innovative di
Sintesi Organiche, Dipartimento di Chimica,
On the other hand, it is known that unsaturated
silanes cannot be easily subjected to palladium-catalyzed
cross-coupling reaction because of the low reactivity of
the silicon-carbon bond toward transmetalation. The
difficulty of performing these reactions with simple
trimethylsilyl compounds has been stressed,11 and the
use of alkenyl-fluoro or -alkoxysilanes in the presence of
fluoride ion12 is required in the reaction with unsaturated
organic halides. More recently, (E)- and (Z)-1-alkenyl-1-
methylsilacyclobutanes have been employed in stereospe-
cific cross-coupling reactions with aryl iodides in mild
conditions.13
In our previous work,14 we overcame the drawback of
the poor reactivity of trimethylsilyl derivatives disclosing
a novel and efficient protocol for the formal cross-coupling
reaction of alkenyl and polyenyl silanes with aryl or vinyl
halides consisting of an ipso-borodesilylation with boron
trichloride and subsequent in situ palladium-catalyzed
coupling reaction of the resulting boron derivative with
organic halides. The overall procedure, described in
Scheme 1, represents a formal Suzuki-Miyaura cross-
coupling reaction starting with unsaturated silanes.
In this paper we report our work dealing with the use
of alkenylsilanes as starting materials for an efficient,
formal Geneˆt cross-coupling reaction with arenediazo-
nium salts.
Universita` di Bari, via Amendola 173, 70126 Bari
Received August 5, 1999
In tr od u ction
Palladium-catalyzed cross-coupling reactions between
organometallic reagents and electrophilic aromatic part-
ners represent a powerful synthetic tool for carbon-
carbon bond formation.1 Besides aryl halides and tri-
flates, arenediazonium salts have been employed as
electrophiles for palladium-catalyzed cross-coupling reac-
tions with stannyl derivatives.2 Related processes also
involving arenediazonium salts are represented by pal-
ladium-catalyzed reactions with alkenes,3 or with germyl
derivatives,4 carboxylation,5 formylation,6 and carbony-
lation7 reactions.
Recently, Geneˆt and co-workers8 have reported the
cross-coupling reaction between arenediazonium tet-
rafluoroborates and aryl or alkenyl boronic acids8a or
potassium trifluoroborates8b in the presence of catalytic
amounts of palladium(II) acetate. The process appears
of special interest since it occurs under mild conditions
and in the absence of both base and ligand. After the
work of the Geneˆt group, similar results involving boronic
acids have been reported also by Sengupta and Bhatta-
charyya.9
Resu lts a n d Discu ssion
* To whom correspondence should be addressed.
(1) Farina, V. In Comprehensive organometallic chemistry II; Abel,
E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon Press: Oxford,
1995; vol. 12, pp 161-240. Naso, F.; Marchese, G. In The chemistry of
functional groups, supplement D: The chemistry of halides, pseudo-
halides and azides; Patai, S., Rappoport, Z., Eds.; New York: Wiley,
1983; pp 1353-1449. Naso, F. Pure Appl. Chem. 1988, 60, 79.
(2) Kikukawa, K.; Kono, K.; Wada, F.; Matsuda, T. J . Org. Chem.
1983, 48, 1333.
(3) Beller, M.; Ku¨hlein, K. Synlett 1995, 441. Beller, M.; Fisher, H.;
Ku¨hlein, K. Tetrahedron Lett. 1994, 35, 8773. Sengupta, S.; Bhatta-
charyya, S. J . Chem. Soc., Perkin Trans. 1 1993, 1943. Sengupta, S.;
Sadhukhan, S. K.; Bhattacharyya, S.; Guha, J . J . Chem. Soc., Perkin
Trans. 1 1998, 407. Yong, W.; Hongwen, H.; Zhuangyu, Z. Synthesis
1991, 967. Kikukawa, K.; Nagira, K.; Wada, F.; Matsuda, T. Tetrahe-
dron 1981, 37, 31. Kikukawa, K.; Meamura, K.; Kiseki, Y.; Wada, F.;
Matsuda, T. J . Org. Chem. 1981, 46, 4885. Akiyama, F.; Miyazaki,
H.; Kaneda, K.; Teranishi, S.; Fujiwara, Y.; Abe, M.; Taniguchi, H. J .
Org. Chem. 1980, 45, 2359. Brunner, H.; Le Cousturier de Courcy, N.;
Geneˆt, J . P. Tetrahedron Lett. 1999, 40, 4815.
Alkenylsilanes 1a -c and (1E,3E)-1,4-bis(trimethylsi-
lyl)-1,3-butadiene 1d were subjected to reaction with
boron trichloride in methylene chloride solution to per-
form the easy ipso-borodesilylation described above. After
removal of the solvent, the intermediates deriving from
the transmetalation step were used directly in a cross-
coupling procedure, adding the solvent (dioxane), pal-
ladium acetate as the catalyst, and diazonium tetraflu-
oroborates 2a -e to the crude product. The results,
reported in Table 1 (entries 1-8), clearly show that, in
contrast with the direct aryldesilylation of vinylsilanes
(10) Kikukawa, K.; Ikenaga, K.; Wada, F.; Matsuda, T. Chem. Lett.
1983, 1337. Kikukawa, K.; Ikenaga, K.; Wada, F.; Matsuda, T. J .
Organomet. Chem. 1984, 270, 277. Ikenaga, K.; Kikukawa, K.; Mat-
suda, T. J . Chem. Soc., Perkin Trans. 1 1986, 1959.
(4) Ikenaga, K.; Matsumoto. S.; Kikukawa, K.; Matsuda, T. Chem.
Lett. 1990, 185.
(5) Kikukawa, K.; Kono, K.; Nagira, K.; Wada, F.; Matsuda, T. J .
Org. Chem. 1981, 46, 4413.
(6) Kikukawa, K.; Totoki, T.; Wada, F.; Matsuda, T. J . Organomet.
Chem. 1984, 270, 283.
(7) Kikukawa, K.; Idemoto, T.; Katayama, A.; Kono, K.; Wada, F.;
Matsuda, T. J . Chem. Soc., Perkin Trans. 1 1987, 1511.
(8) a) Darses, S.; J effery, T.; Geneˆt, J . P.; Brayer, J . L.; Demoute, J .
P. Tetrahedron Lett. 1996, 37, 3857. Darses, S.; J effery, T.; Brayer, J .
L.; Demoute, J . P.; Geneˆt, J . P. Bull. Soc. Chim. Fr. 1996, 133, 1095.
b) Darses, S.; Geneˆt, J . P.; Brayer, J . L.; Demoute, J . P. Tetrahedron
Lett. 1997, 38, 4393. Darses, S.; Michaud, G.; Geneˆt, J . P. Tetrahedron
Lett. 1998, 39, 5045.
(11) Andreini, B. P.; Carpita, A.; Rossi, R.; Scamuzzi, B. Tetrahedron
1989, 45, 5621.
(12) Hatanaka, Y.; Hiyama, T. Synlett 1991, 845. Hiyama, T.;
Hatanaka, Y. Pure Appl. Chem. 1994, 66, 1471. Hagiwara, E.; Gouda,
K.; Hiyama T. Tetrahedron Lett. 1997, 38, 439.
(13) Denmark, S. E.; Choi, J . Y. J . Am. Chem. Soc. 1999, 121, 5821.
(14) (a) Farinola, G. M.; Fiandanese, V.; Mazzone, L.; Naso, F. J .
Chem. Soc. Chem. Commun. 1995, 2523. (b) Babudri, F.; Farinola, G.
M.; Fiandanese, V.; Mazzone, L.; Naso, F. Tetrahedron 1998, 54, 1085.
(c) Naso, F. In Current Trends in Organic Chemistry; Scolastico, C.,
Nicotra, F., Eds.; Plenum Publishing Corporation: New York, 1999;
pp 259-266. (d) Naso, F.; Babudri, F.; Farinola, G. M. Pure Appl.
Chem., in press.
(9) Sengupta, S.; Bhattacharyya, S. J . Org. Chem. 1997, 62, 3405.
10.1021/jo9912451 CCC: $19.00 © 2000 American Chemical Society
Published on Web 02/11/2000