Journal of the American Chemical Society
Communication
Chowdhury, S.; Alcala-Torano, R.; Hecht, S. M. Bioorg. Med. Chem.
2013, 21, 1088−1096. (c) Maini, R.; Roy Chowdhury, S.; Dedkova, L.
M.; Roy, B.; Daskalova, S. M.; Paul, R.; Chen, S.; Hecht, S. M.
Biochemistry 2015, 54, 3694−3706.
Table 3. Estimation of Quantum Yields of Modified Green
Fluorescent Proteins in Comparison with GFPwt
λex/abs, abs extinction coeff,
protein
nm
M−1 cm−1
quantum yield, λem
(6) Tsien, R. Y. Annu. Rev. Biochem. 1998, 67, 509−544.
GFPwt
395
310
310
25,000
90,300
50,200
0.79 (509 nm)22
0.91 (378 nm)
0.84 (407 nm)
(7) Modifications to the 23S rRNA also included one of eight new
sequences for nucleotides 2057−2063, introduced to confer moderate
resistance to erythromycin in support of the selection protocol.5a
(8) Robertson, S. A.; Noren, C. J.; Anthony-Cahill, S. J.; Griffith, M.
C.; Schultz, P. G. Nucleic Acids Res. 1989, 17, 9649−9660.
(9) While the S-30 preparation contained both modified and wild-
type ribosomes, only the modified ribosomes can incorporate the
dipeptide, and so must be the source of all DHFR polypeptide chains
containing the dipeptide. Position 10 of DHFR has no known
function,2a so incorporation of Gly-Phe at position 10 per se would not
be expected to alter DHFR activity. See Table S2 for complete data.
(10) (a) Goldberg, J. M.; Batjargal, S.; Petersson, E. J. J. Am. Chem.
Soc. 2010, 132, 14718−14720. (b) Wissner, R. F.; Batjargal, S.; Fadzen,
C. M.; Petersson, E. J. J. Am. Chem. Soc. 2013, 135, 6529−6540.
(11) (a) Goldberg, J. M.; Speight, L. C.; Fegley, M. W.; Petersson, E.
J. J. Am. Chem. Soc. 2012, 134, 6088−6091. (b) Goldberg, J. M.;
Batjargal, S.; Chen, B. S.; Petersson, E. J. J. Am. Chem. Soc. 2013, 135,
18651−18658.
GFP66oxazole5
GFP66Gly39oxazole5
which the dipeptide is incorporated implies that it is essentially
expendable structurally, as illustrated by analogues 4 and 5.
Thus, the incorporation of dipeptide mimetics can afford
structures not accessible by the successive incorporation of two
amino acids. Numerous applications, including the creation of
libraries of fluorescent proteins having a range of photophysical
properties23 and the metabolic stabilization of proteins of
therapeutic interest,24 can be readily envisioned. While
structure 5, in particular, represents a fairly significant departure
from any amino acid whose ribosomal incorporation into
protein has been reported previously, it may ultimately prove
feasible to select ribosomes capable of incorporating even more
complex and potentially useful substrates.
(12) Batjargal, S.; Wang, Y. J.; Goldberg, J. M.; Wissner, R. F.;
Petersson, E. J. J. Am. Chem. Soc. 2012, 134, 9172−9182.
(13) Muir, T. W. Annu. Rev. Biochem. 2003, 72, 249−289.
(14) Murakami, H.; Hohsaka, T.; Ashizuka, Y.; Hashimoto, K.;
Sisido, M. Biomacromolecules 2000, 1, 118−125. (Figures 7−9 in this
report employ three amino acids containing the 7-methoxycoumarin
fluorophore, each of which was attached to the backbone of
streptavidin at position 120 via one of three different linkers. Their
fluorescence emission maxima differed by about 20 nm, establishing
the environmental sensitivity of this fluorophore.)
(15) In an earlier study two pyrenylalanines incorporated into these
positions were within several angstroms, and close enough to undergo
excimer formation. See: Chen, S.; Wang, L.; Fahmi, N. E.; Benkovic, S.
J.; Hecht, S. M. J. Am. Chem. Soc. 2012, 134, 18883−18885 and
references therein.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Synthetic methods, compound characterization for
compounds prepared, and additional characterization of
the elaborated proteins (PDF)
AUTHOR INFORMATION
Corresponding Author
Notes
■
(16) Thomsen, I.; Clausen, K.; Scheibye, S.; Lawesson, S.-O. Org.
Synth. 1984, 62, 158−164.
The authors declare no competing financial interest.
(17) Chen, S.; Fahmi, N. E.; Wang, L.; Bhattacharya, C.; Benkovic, S.
J.; Hecht, S. M. J. Am. Chem. Soc. 2013, 135, 12924−12927.
(18) Quantification of protein concentrations was carried out by
Coomassie Brilliant Blue R-250 staining of bands of the proteins
following separation by SDS−PAGE, in comparison with known
concentrations of wild-type DHFR (Figure S3).
ACKNOWLEDGMENTS
■
This work was supported by National Institutes of Health
Research Grant GM103861, awarded by the National Institute
of General Medical Sciences. We thank Dr. Sriloy Dey for
assistance in preparing a synthetic intermediate.
(19) Also prepared in parallel was a modified DHFR containing
thiodipeptide 4 at position 10. Analysis of a tryptic digest by MALDI-
MS verified incorporation of the thiolated dipeptide, as well as the
absence of any detectable exchange of O in lieu of S (Figure S4).
(20) For oxazole derivative 12, the molar absorptivity in MeOH was
26 800 M−1 cm−1 and the quantum yield was 0.59.
(21) To date, we have been unable to verify dipeptide incorporation
by MS/MS analysis, relying instead on MS data derived from
proteolytic fragments. We note that these do not reflect any increase in
microheterogeneity occasioned by the use of modified ribosomes.
(22) Patterson, G. H.; Knobel, S. M.; Sharif, W. D.; Kain, S. R.;
Piston, D. W. Biophys. J. 1997, 73, 2782−2790.
(23) We have recently succeeded in incorporating a fluorescent
thiazole amino acid into GFP. Roy Chowdhury et al., submitted.
(24) Kamionka, M. Curr. Pharm. Biotechnol. 2011, 12, 268−274.
REFERENCES
■
(1) (a) Hendrickson, T. L.; de Crecy-Lagard, V.; Schimmel, P. Annu.
Rev. Biochem. 2004, 73, 147−176. (b) Liu, C. C.; Schultz, P. G. Annu.
Rev. Biochem. 2010, 79, 413−444.
(2) (a) Karginov, V. A.; Mamaev, S. V.; An, H.; Van Cleve, M. D.;
Hecht, S. M.; Komatsoulis, G. A.; Abelson, J. N. J. Am. Chem. Soc.
1997, 119, 8166−8176. (b) Hohsaka, T.; Kajihara, D.; Ashizuka, Y.;
Murakami, H.; Sisido, M. J. Am. Chem. Soc. 1999, 121, 34−40.
́
(c) Rothman, D. M.; Petersson, E. J.; Vazquez, M. E.; Brandt, G. S.;
Dougherty, D. A.; Imperiali, B. J. Am. Chem. Soc. 2005, 127, 848−847.
(3) (a) Bain, J. D.; Diala, E. S.; Glabe, C. G.; Wacker, D. A.; Lyttle,
M. H.; Dix, T. A.; Chamberlin, A. R. Biochemistry 1991, 30, 5411−
5421. (b) Killian, J. A.; Van Cleve, M. D.; Shayo, Y. F.; Hecht, S. M. J.
Am. Chem. Soc. 1998, 120, 3032−3042. (c) Eisenhauer, B. M.; Hecht,
S. M. Biochemistry 2002, 41, 11472−11478.
(4) (a) Dedkova, L. M.; Fahmi, N. E.; Golovine, S. Y.; Hecht, S. M. J.
Am. Chem. Soc. 2003, 125, 6616−6617. (b) Dedkova, L. M.; Fahmi, N.
E.; Golovine, S. Y.; Hecht, S. M. Biochemistry 2006, 45, 15541−15551.
(5) (a) Dedkova, L. M.; Fahmi, N. E.; Paul, R.; del Rosario, M.;
Zhang, L.; Chen, S.; Feder, G.; Hecht, S. M. Biochemistry 2012, 51,
401−415. (b) Maini, R.; Nguyen, D.; Chen, S.; Dedkova, L. M.; Roy
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX