Journal of the American Chemical Society
ARTICLE
(e) Kozlowski, M. C.; Morgan, B. J.; Linton, E. C. Chem. Soc. Rev. 2009,
38, 3193 and references therein. (f) Rao, A. V. R.; Gurjar, M. K.; Reddy,
K. L.; Rao, A. S. Chem. Rev. 1995, 95, 2135. (g) Nicolaou, K. C.; Boddy,
C. N. C.; Br€ase, S.; Winssinger, N. Angew. Chem., Int. Ed. 1999, 38, 2096.
(h) Cepanec, I. Synthesis of Biaryls; Elsevier, Inc.: San Diego, CA, 2004.
(i) Roncali, J. Chem. Rev. 1992, 92, 711. (j) Mei, X.; Wolf, C. J. Am. Chem.
Soc. 2006, 128, 13326.
(2) (a) Stille, J. K. Angew. Chem., Int. Ed. 1986, 25, 508. (b) Farina,
V.; Krishnamurthy, V.; Scott, W. J. Org. React. 1997, 50, 1. (c) Miyaura,
N.; Suzuki, A. Chem. Rev. 1995, 95, 2457. (d) Suzuki, A. J. Organomet.
Chem. 1999, 576, 147. (e) Beletskaya, I. P.; Cheprakov, A. Chem. Rev.
2000, 100, 3009. (f) Kotha, S.; Lahiri, K.; Kashinath, D. Tetrahedron
2002, 58, 9633. (g) Denmark, S. E.; Sweis, R. F. Acc. Chem. Res. 2002, 35,
835. (h) Muci, A. R.; Buchwald, S. L. Top. Curr. Chem. 2002, 219, 131.
(i) Hassan, J.; Sꢀevignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem.
Rev. 2002, 102, 1359.(j) de Meijere, A.; Diederich, F. Metal-Catalyzed
Cross-Coupling Reactions; Wiley-VCH; Weinheim, Germany, 2004. (k)
Martin, R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41, 1461.
(3) For reviews that discuss C-H arylation reactions, see: (a)
Campeau, L. C.; Fagnou, K. Chem. Commun. 2006, 1253. (b) Daugulis,
O.; Zaitsev, V. G.; Shabashov, D.; Pham, Q. N.; Lazareva, A. Synlett 2006,
3382. (c) Yu, J. Q.; Giri, R.; Chen, X. Org. Biomol. Chem. 2006, 4, 4041.
(d) Godula, K.; Sames, D. Science 2006, 312, 67. (e) Alberico, D.; Scott,
M. E.; Lautens, M. Chem. Rev. 2007, 107, 174. (f) Beccalli, E. M.;
Broggini, G.; Martinelli, M.; Sottocornola, S. Chem. Rev. 2007, 107,
5318. (g) Ackermann, L. Synlett 2007, 507. (h) Fairlamb, I. J. S. Chem.
Soc. Rev. 2007, 36, 1036. (i) Campeau, L. C.; Fagnou, K. Chem. Soc. Rev.
2007, 36, 1058. (j) Catellani, M.; Motti, E.; Della Ca’, N. Acc. Chem. Res.
2008, 41, 1512. (k) Kakiuchi, F.; Kochi, T. Synthesis 2008, 3013. (l) Li,
B. J.; Yang, S. D.; Shi, Z. J. Synlett 2008, 949. (m) McGlacken, G. P.;
Bateman, L. M. Chem. Soc. Rev. 2009, 38, 2447. (n) Chen, X.; Engle,
K. M.; Wang, D. H.; Yu, J. Q. Angew. Chem., Int. Ed. 2009, 48, 5094. (o)
Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
(13) The presence/absence of DMSO did not influence the selec-
tivity in this system. It was used as an additive in our previously reported
catalytic L∼C-H/aryl-H cross-coupling reactions and was maintained
throughout the current investigations for consistency.
(14) The addition of 3 equiv of AcOH to regime 1 in this series of
sterically differentiated quinones altered the magnitude of selectivity;
however, the overall trend remained unchanged. See page S18 of the
Supporting Information for details.
(15) For other examples of BQ-promoted reductive elimination, see:
(a) Temple, J. S.; Riediker, M.; Schwartz, J. J. Am. Chem. Soc. 1982, 104, 1310.
(b) Backvall, J. E.; Bystrom, S. E.; Nordberg, R. E. J. Org. Chem. 1984, 49,
4619. (c) B€ackvall, J. E.; Nordberg, R. E.; Wilhelm, D. J. Am. Chem. Soc. 1985,
107, 6892. (d) Szabꢀo, K. Organometallics 1998, 17, 1677. (e) Albꢀeniz, A. C.;
Espinet, P.; Martn-Ruiz, B. Chem.—Eur. J. 2001, 7, 2481. (f) Chen, M. S.;
Prabagaran, N.; Labenz, N. A.; White, M. C. J. Am. Chem. Soc. 2005, 127,
6970. (g) Chen, X.; Li, J. J.; Hao, X. S.; Goodhue, C. E.; Yu, J. Q. J. Am. Chem.
Soc. 2006, 128, 78. (h) Pꢀerez-Rodríguez, M.; Braga, A. A. C.; Garcia-Mechor,
M.; Pꢁerez-Temprano, M. H.; Casares, J. A.; Ujaque, G.; de Lera, A. R.; lvarez,
R.; Maseras, F.; Espinet, P. J. Am. Chem. Soc. 2009, 131, 3650. (i) Lanci, M. P.;
Remy, M. S.; Kaminsky, W.; Mayer, J. M.; Sanford, M. S. J. Am. Chem. Soc.
2009, 131, 15618. (j) Yin, G.; Wu, Y.; Liu, G. J. Am. Chem. Soc. 2010, 132,
11978. (k) Ishikawa, A.; Nakao, Y.; Sato, H.; Sakaki, S. Dalton Trans. 2010, 39,
3279.
(16) Experiments performed at lower than 1 equiv of quinone provided
further support for this hypothesis. For example, the use of 0.1 equiv of 2,5-
diarylquinone with X = CF3 afforded a 7:1 ratio of A/B, consistent with a
reduced contribution from k2A/B[PdA/B][quinone] to selectivity.
(17) Liꢀegault, B.; Petrov, I.; Gorelsky, S. I.; Fagnou, K. J. Org. Chem.
2010, 75, 1047 and references therein.
(18) This reversal is consistent with the A/B selectivity of 3:1 in the
catalytic reactions, where both AcO- [from the Pd(OAc)2 catalyst] and
CO32- (from the Ag2CO3 oxidant) are present. This is an intermediate
to the A/B ratio, with X = AcO- (5:1) and CO32- (1:6).
(19) The lack of correlation is even more pronounced if transition-
state theory (TST) is used to estimate the expected isomer distribution.
Using the difference in intermediate energies (EA - EB ) as a crude
approximation for the relative transition-state energies, the expected B/
A selectivities were calculated and are shown in Table S6 in the
Supporting Information.
(20) (a) Lafrance, M.; Rowley, C. N.; Woo, T. K.; Fagnou, K. J. Am.
Chem. Soc. 2006, 128, 8754. (b) Gorelsky, S. I.; Lapointe, D.; Fagnou, K.
J. Am. Chem. Soc. 2008, 130, 10848.
(21) Garcia-Cuadrado, D.; Braga, A. A. C.; Maseras, F.; Echaverren,
A. M. J. Am. Chem. Soc. 2006, 128, 1066.
(22) Literature studies have shown that gas-phase calculations with
diffuse basis sets are appropriate for calculating the deprotonation
energies of simple molecules. For example, see: (a) Hehre, W. J.; Radom,
L.; Schleyer, P. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; John
Wiley and Sons: New York, 1986. (b) Maksic, Z. B.; Kovacek, D.; Eckert-
Maksic, M.; Zrinski, I. J. Org. Chem. 1996, 61, 6717.
(4) Ashenhurst, J. A. Chem. Soc. Rev. 2010, 39, 540.
(5) (a) Li, R.; Jiang, L.; Lu, W. Organometallics 2006, 25, 5973. (b)
Rong, Y.; Li, R.; Lu, W. Organometallics 2007, 26, 4376. (c) You, S.; Xia,
J. Top. Curr. Chem. 2010, 292, 165–195.
0
0
(6) (a) Stuart, D. R.; Fagnou, K. Science 2007, 316, 1172. (b) Stuart,
D. R.; Villemure, E.; Fagnou, K. J. Am. Chem. Soc. 2007, 129, 12072. (c)
Dwight, T. A.; Rue, N. R.; Charyk, D.; Josselyn, R.; DeBoef, B. Org. Lett. 2007,
9, 3137. (d) Potavathri, S.; Dumas, A. S.; Dwight, T. A.; Naumiec, G. R.;
Hammann, J. M.; DeBoef, B. Tetrahedron Lett. 2008, 49, 4050. (e) Xi, P.;
Yang, F.; Qin, S.; Zhao, D.; Lan, J.; Gao, G.; Hu, C.; You, J. J. Am. Chem. Soc.
2010, 132, 1822. (f) Potavathri, S.; Pereira, K. C.; Gorelsky, S. I.; Pike, A.;
LeBris, A. P.; DeBoef, B. J. Am. Chem. Soc. 2010, 132, 14676.
(7) For examples of Pd-catalyzed oxidative Ar-H homocoupling,
see: (a) Hull, K. L.; Lanni, E. L.; Sanford, M. S. J. Am. Chem. Soc. 2006,
128, 14047. (b) Mori, A.; Sugie, A. Bull. Chem. Soc. Jpn. 2008, 81, 548.(c)
Ref 5b. (e) Liang, Z.; Zhao, J.; Zang, Y. J. Org. Chem. 2010, 75, 170.
(8) (a) Xia, J. B.; You, S. L. Organometallics 2007, 26, 4869. (b) Hull,
K. L.; Sanford, M. S. J. Am. Chem. Soc. 2007, 129, 11904. (c) Tian, S. L.;
Fang, Z.; Shi, Z. J. Angew. Chem., Int. Ed. 2008, 47, 1115. (d) Brasche, G.;
García-Fortanet, J.; Buchwald, S. L. Org. Lett. 2008, 47, 2207. (e) Zhao,
X.; Yeung, C. S.; Dong, V. M. J. Am. Chem. Soc. 2010, 132, 5837. (f)
Yeung, C. S.; Zhao, X.; Borduas, N.; Dong, V. M. Chem. Sci. 2010, 1, 331.
(g) Scheuermann, C. J. Chem.—Asian J. 2010, 5, 436.
(9) The exact mechanism of BQ complexation and BQ-promoted
reductive elimination remains to be elucidated. For example, the initial
BQ binding could occur via a 5-coordinate intermediate, such as
compound 3 in Scheme 1, or via an associative ligand substitution
reaction (where compound 3 is a transition state for the ligand
substitution event).
(10) Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2009, 131, 9651.
(11) Functionalization at HC (to form isomer C) was not detected
under these conditions.
(23) A recent report by Potavathri et al.6f suggested that the relative
reactivity of arene C-H bonds toward Pd-catalyzed C-H functionali-
zation via a concerted metalation/deprotonaton mechanism can be
predicted by their ground-state bond lengths. As shown in Table S9 in
the Supporting Information, the C-HA and C-HB bond lengths for the
1,3- and 1,2,3-substituted arenes in Table 10 show no correlation with
B/A isomer ratios from the compound 5/Cs2CO3 reactions.
(24) Another possibility to account for the reversal in selectivity with
compound 5/Cs2CO3 is that the presence of a carbonate base renders the
C-H activation step of Scheme 2 irreversible. In this scenario, equilibration
between PdA and PdB would be inhibited and the reversal in selectivity would
be due to a kinetic preference for C-H cleavage to form PdB over PdA
(analogous to the situation in limiting regime 1). Several pieces of evidence
suggest that this is not the complete explanation for the observed effect with
complex 5/Cs2CO3. First, Figure 2 shows that the A/B selectivity levels off at
close to 1:1 in regime 1, which is considerably different from that obtained
with complex 5/Cs2CO3. Second, the reaction of acetate complex 1 with
DMB in the presence of 1 equiv of BQ and 1 equiv of Cs2CO3 afforded
(12) The use of 1 and 20 equiv of BQ were examined as representa-
tive points in regimes 1 and 2. For consistency, we have compared all of
the reactions presented herein under these conditions.
4463
dx.doi.org/10.1021/ja1097918 |J. Am. Chem. Soc. 2011, 133, 4455–4464