ganic reaction in water or aqueous media has attracted
great interest in organic synthesis from the vantage
points of its cost, safety, and environmental concern.11
Therefore, the development of an efficient synthetic
methodology to form a carbon-carbon bond in water or
aqueous media appears to be very important. On the
basis of this contract, the pinacol coupling reaction has
been accomplished using water or aqueous media as a
solvent, but these protocols require a stoichiometric
metallic reductant with an acid or base activator, or a
stoichiometric metallic reductant generated by treatment
with a metallic co-reductant.3c,d,5d,6a,7a,b,8a,d,9,10 Upon check-
ing the literature, we found no examples for a catalytic
system to induce the pinacol coupling in water. Recently,
we have successfully developed a catalytic pinacol cou-
pling for the first time using a ternary catalytic system
consisting of a vanadium or titanium catalyst, a metallic
co-reductant, and a chlorosilane (eq 1).12 The presence
of a chlorosilane is essential to recycle a catalyst. A
catalytic system working in water should be developed
from these points of view. We herein describe the
catalytic pinacol coupling reaction in water using a binary
catalytic system.
Vanadium-Catalyzed Pinacol Coupling
Reaction in Water
Xiaoliang Xu and Toshikazu Hirao*
Department of Applied Chemistry, Graduate School of
Engineering, Osaka University, Yamada-oka,
Suita, Osaka 565-0871, Japan
Received June 15, 2005
A catalytic pinacol coupling using water as a solvent was
performed by a catalytic amount of vanadium(III) chloride
and metallic Al as a co-reductant. A combination forms a
binary catalytic system, being in sharp contrast to the
reaction in organic solvent, which requires a chlorosilane
as an additive. Various aromatic aldehydes underwent the
reductive coupling to give the corresponding 1,2-diols in
moderate to good yields.
The pinacol coupling is a powerful synthetic method
for constructing vicinally functionalized carbon-carbon
bonds.1 Various low-valent metals such as Al-Hg,2 Sm,3
V,4 Mg,5 Ti,6 Zn,7 Mn,8 Al,9 and In10 have been used to
promote this reductive coupling reaction. Recently, or-
Using vanadium or titanium salts as a stoichiometric
promoter, we studied first the effect of metallic co-
reductants and solvent on the pinacol coupling reaction
of benzaldehyde (eq 2 and Table 1). No reaction occurred
only with metallic Zn or Al in water (entries 1 and 2).
When 1 mmol of NH4VO3, Ti(OPr-i)4, or VOSO4‚(2-3
H2O) was combined with 3 mmol of co-reductant Zn, most
of the benzaldehyde (1 mmol) remained without reduction
(1) For comprehensive reviews, see: (a) Wirth, T. Angew. Chem.,
Int. Ed. Engl. 1996, 35, 61. (b) Dushin, R. G. In Comprehensive
Organometallic Chemistry II; Hegedus, L. S., Ed.; Pergamon: Oxford,
1995; Vol. 12, pp 1071-1095. (c) Fu¨rstner, A. Angew. Chem., Int. Ed.
Engl. 1993, 32, 164. (d) Robertson, G. M. In Comprehensive Organic
Synthesis; Trost, B. M., Ed.; Pergamon: New York, 1991; Vol. 3, pp
563-611. (e) McMurry, J. E. Chem. Rev. 1989, 89, 1513. (f) Kahn, B.
E.; Rieke, R. D. Chem. Rev. 1988, 88, 733. (g) Hirao, T. Synlett 1999,
175.
(2) (a) Mundy, B. P.; Bruss, D. R.; Kim, Y.; Larsen, R. D.; Warnet,
R. J. Tetrahedron Lett. 1985, 26, 3927. (b) Shishido, K.; Nozaki, H. J.
Am. Chem. Soc. 1948, 70, 776. For reviews, see: (c) Troyansky, E. I.
In Encyclopedia of Reagents for Organic Synthesis; Paquette, L. A.,
Ed.; Wiley & Sons: Chichester, 1995; Vol. 1, pp 150-153. (d) Apblett,
A. W. In Encyclopedia of Inorganic Chemistry; King, R. B., Ed.; Wiley
& Sons: Chichester, 1994; Vol. 1, pp 103-116.
(3) (a) Aspinall, H. C.; Greeves, N.; Valla, C. Org. Lett. 2005, 7, 1919.
(b) Ueda, T.; Kanomata, N.; Machida, H. Org. Lett. 2005, 7, 2365. (c)
Matsukawa, S.; Hinakubo, Y. Org. Lett. 2003, 5, 1221. (d) Wang, L.;
Zhang, Y. M. Tetrahedron Lett. 1998, 39, 5257. (e) Molander, G. A.;
Kenny, C. J. Am. Chem. Soc. 1989, 111, 8236. (f) Namy, J. L.; Souppe,
J.; Kagan, H. B. Tetrahedron Lett. 1983, 24, 765.
(4) (a) Kammermeier, B.; Beck, G.; Jacobi, D.; Jendralla, H. Angew.
Chem., Int. Ed. Engl. 1994, 33, 685. (b) Annunziata, R.; Benaglia, M.;
Cinquini, M.; Cozzi, F.; Giaroni, P. J. Org. Chem. 1992, 57, 782. (c)
Kempf, D. J.; Sowin, T. J.; Doherty, E. M.; Hannick, S. M.; Codavoci,
L.; Henry, R. F.; Green, B. E.; Spanton, S. G.; Norbeck, D. W. J. Org.
Chem. 1992, 57, 5692. (d) Freudenberger, J. H.; Konradi, A. W.;
Pederson, S. F. J. Am. Chem. Soc. 1989, 111, 8014.
(6) (a) Barden, M. C.; Schwartz, J. J. Am. Chem. Soc. 1996, 118,
5485. For reviews, see: (b) Fu¨rstner, A.; Bogdanovi’c, B. Angew. Chem.,
Int. Ed. Engl. 1996, 35, 2443. (c) McMurry, J. E. Chem. Rev. 1989, 89,
1513. (d) Kahn, B. E.; Rieke, R. D. Chem. Rev. 1988, 88, 733.
(7) (a) Tsukinoki, T.; Kawaji, T.; Hashimoto, I.; Mataka, S.; Tashiro,
M. Chem. Lett. 1997, 235. (b) Tanaka, K.; Kishigami, S.; Toda, F. J.
Org. Chem. 1990, 55, 2981. (c) Tiemann, F. Ber. 1886, 19, 355.
(8) (a) Takai, K.; Morita, R.; Matsushita, H.; Toratsu, C. Chirality
2003, 15, 17. (b) Hojo, M.; Yoshizawa, J.; Funahashi, Y.; Okada, R.;
Nakamura, S.; Tateiwa, J.; Hosomi, A. Heterocycles 1998, 49, 85. (c)
Rieke, R. D.; Kim, S. H. J. Org. Chem. 1998, 63, 5235. (d) Li, C. J.;
Meng, Y.; Yi, X. H. J. Org. Chem. 1997, 62, 8632.
(9) (a) Bhar, S.; Guha, S. Tetrahedron Lett. 2004, 45, 3775. (b) Li,
L. H.; Chan, T. H. Org. Lett. 2000, 2, 1129. (c) Sahade, D. A.; Mataka,
S.; Sawada, T.; Tsukinoki, T.; Tashiro, M. Tetrahedron Lett. 1997, 38,
3745. (d) Khurana, J. M.; Sehgal, A. J. Chem. Soc., Chem. Commun.
1994, 571.
(10) (a) Nair, V.; Ros, S.; Jayan, C. N.; Rath, N. P. Tetrahedron Lett.
2002, 43, 8967. (b) Lim, H. J.; Keum, G.; Kang, S. B.; Chung, B. Y.;
Kim, Y. Tetrahedron Lett. 1998, 39, 4367.
(11) (a) Organic Synthesis in Water; Grieco, P. A., Ed.; Blackie
Academic & Professional: Glasgow, 1998. (b) Li, C. J.; Chen, T. H.
Organic Reactions in Aqueous Media; Wiley & Sons: New York, 1997.
(c) Lubineau, A.; Auge, J.; Queneau, Y. Synthesis 1994, 741. (d) Li, C.
J. Chem. Rev. 1993, 93, 2023.
(12) (a) Hirao, T.; Ogawa, A.; Asahara, M.; Muguruma, Y.; Sakurai,
H. Org. Synth. 2005, 81, 26. (b) Hirao, T.; Asahara, M.; Muguruma,
Y.; Ogawa, A. J. Org. Chem. 1998, 63, 2812. (c) Hatano, B.; Ogawa,
A.; Hirao, T. J. Org. Chem. 1998, 63, 9421. (d) Hirao, T.; Hasegawa,
T.; Muguruma, Y.; Ikeda, I. J. Org. Chem. 1996, 61, 366. For a review
of vanadium, please see: (e) Hirao, T. Coord. Chem. Rev. 2003, 271.
(f) Hirao, T. Chem. Rev. 1997, 97, 2707.
(5) (a) Handy, S. T.; Omune, D. Org. Lett. 2005, 7, 1553. (b)
Uchiyama, M.; Matsumoto, Y.; Nakamura, S.; Ohwada, T.; Kobayashi,
N.; Yamashita, N.; Matsumiya, A.; Sakamoto, T. J. Am. Chem. Soc.
2004, 126, 8755. (c) Maekawa, H.; Yamamoto, Y.; Shimada, H.;
Yonemura, K.; Nishiguchi, I. Tetrahedron Lett. 2004, 45, 3869. (d)
Mecarova, M.; Toma, S. Green Chem. 1999, 1, 257. (e) Fu¨rstner, A.;
Csuk, R.; Rohrer, C.; Weidmann, H. J. Chem. Soc., Perkin Trans. 1
1988, 1729. (f) Handa, Y.; Inanaga, J. Tetrahedron Lett. 1987, 28, 5717.
(g) Gomberg, M.; Bachmann, W. E. J. Am. Chem. Soc. 1927, 49, 236.
10.1021/jo051213f CCC: $30.25 © 2005 American Chemical Society
Published on Web 09/13/2005
8594
J. Org. Chem. 2005, 70, 8594-8596