7
chromatography on silica gel, 100-200 mesh. Melting points were determined in open capillary tubes on EZ-Melt automated melting point apparatus and are
uncorrected. All the compounds were fully characterized by 1H and 13C NMR and further confirmed by EI-HRMS analysis. All HRMS are recoreded in EI-
1
QTOF method and LC-MS are recorded in APCI method in acetonitrile solvent. H (13C) NMR spectra were recorded at 400 (100) MHz on a Brucker
spectrometer using CDCl3 as a solvent. The 1H and 13C chemical shifts were referenced to residual solvent signals at H/C 7.26/77.28 (CDCl3) relative to TMS
as internal standards. Coupling constants J [Hz] were directly taken from the spectra and are not averaged. Splitting patterns are designated as s (singlet), d
(doublet), t (triplet), q (quartet), m (multiplet), overlapped and br (broad).
General Experimental Procedure for the Synthesis of Pyridines 3aa-as, 5ak, 5ka using Aryl Ketones 1a-s and Amino Acids 2a-b: A 10 mL reaction
vial was charged with a mixture of aryl ketones 1a-s (1.0 mmol), amino acids 2a-b (2.0 mmol), Fe(NO3)3·9H2O (0.5 mmol, 202 mg), In(OTf)3 (0.5 mmol,
281 mg), DMSO (1 mL). The reaction vial was then heated at 120 °C for 24 h. After completion of the reaction (progress was monitored by TLC; SiO2,
Hexane/EtOAc = 9:1), the mixture was diluted with ethyl acetate (15 mL) and water (20 mL) and extracted with ethyl acetate (3 × 10 mL). The combined
organic layers were washed with brine (3 × 10 mL) and dried over anhydrous Na2SO4. The solvent were removed under reduced pressure and the crude
products were purified by column chromatography using silica gel (100-200 mesh) with hexane/EtOAc (9:1) as the eluent to obtain the desired products
3aa-as, 5ak, 5ka in high yields.
1
2,4-Diphenylpyridine (3aa)5g (Scheme 2): Yellow solid, Rf = 0.50 (SiO2, Hexane/EtOAc = 9:1); m.p = 59-60 °C (Lit5g 58-59 °C); H NMR (400 MHz,
CDCl3): δ = 8.75 (d, 3J = 6.1 Hz, 1H; 6-H), 8.06 (d, 3J = 8.0 Hz, 2H; 8-H), 7.94 (s, 1H; 3-H), 7.70 (d, 3J = 7.6 Hz, 2H; 12-H), 7.54-7.44 (m, 7H; 5-H, 9-H,
10-H, 13-H and 14-H) ppm; 13C NMR (100 MHz, CDCl3) δ = 158.24 (C-2), 150.2 (C-6), 149.4 (C-4), 139.64 (C-7), 138.68 (C-11), 129.24 (C-13), 129.15
(C-10), 128.88 (C-9 and C-14), 127.7 (C-8), 127.17 (C-12), 120.37 (C-5), 118.89 (C-3) ppm; HRMS (EI-QTOF, [M + H]+): calculated for C17H14N:
232.1125; found: 232.1121.
References and notes
1. For reviews, see: a) Nakamura, I.; Yamamoto, Y. Chem. Rev. 2004, 104, 2127-2198. b) Kaur, N. Synth. React. Inorg., Met.-Org., Nano-Met.
Chem. 2015, 46, 983-1020. c) Kaur, N. J. Iran. Chem. Soc. 2015, 12, 9-45. d) Bhaskaruni, S. V. H. S.; Maddila, S.; Gangu, K. K.;
Heterocyclic Synthesis; Solé, D.; Fernández, I., Eds.; Elsevier, Amsterdam, 2018; pp. 1-366. ISBN: 978-0-12-811651-7.
2.
For reviews, see: a) Zeni, G.; Larock, R. C. Chem. Rev. 2006, 106, 4644-4680. b) Liu, T.; Fu, H. Synthesis 2012, 44, 2805-2824. c) Inamoto, K.
Chem. Pharm. Bull. 2013, 61, 987-996. d) Niu, J. Dissertation. University of Oxford, 2016. For book see: e) Rhodium Catalysis in Organic
Synthesis: Methods and Reactions; Tanaka, K., Ed.; John Wiley & Sons, Weinheim, 2019; pp. 1-688. ISBN: 9783527343645. f) Kaur, N. J.
Iran. Chem. Soc. 2019, 16, 1-29.
3. For reviews, see: a) ChunXiang, W.; BoShun, W. Chin. Sci. Bull. 2012, 57, 2338-2351. b) Jia, F.; Li, Z. Org. Chem. Front. 2014, 1, 194-214. c)
Bauer, I.; Knölker, H.-J. Chem. Rev. 2015, 115, 3170-3387. d) Mandal, S. K.; Chattopadhyay, A. P. IOSR J. Appl. Chem. 2016, 9, 40-65. e)
Fürstner, A. ACS Cent. Sci. 2016, 2, 778-789. f) Sreedevi, R.; Saranya, S.; Rohit, K. R.; Anilkumar, G. Adv. Synth. Catal. 2019, 361, 2236-
2249.
4. For reviews, see: a) Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Chem. Rev. 2004, 104, 6217-6254. b) Gallego, D.; Baquero, E. A. Open Chem.
2018, 16, 1001-1058.
5.
6.
7.
a) Cohen, N.; Blount, J. F.; Lopresti, R. J.; Trullinger, D. P. J. Org. Chem. 1979, 44, 4005-4007. b) Reetz, M. T.; Lee, W. K. Org. Lett. 2001,
3, 3119-3120. c) Huang, W.; Li, J.; Ou, L. Synth. Commun. 2007, 37, 2137-2143. d) Sriramurthy, V.; Barcan, G. A.; Kwon, O. J. Am. Chem.
Soc. 2007, 129, 12928-12929. e) Wang, Q.; Wan, C.; Gu, Y.; Zhang, J.; Gao, L.; Wang, Z. Green Chem. 2011, 13, 578-581. f) Xiang, J.-C.;
Wang, M.; Cheng, Y.; Wu, A.-X. Org. Lett. 2016, 18, 24-27. g) Gujjarappa, R.; Vodnala, N.; Kumar, M.; Malakar, C. C. J. Org. Chem. 2019,
84, 5005-5020.
a) Sahu, A.; Prabhash, K.; Noronha, V.; Joshi, A.; Desai, S. South Asian J. Cancer 2013, 2, 91-97. b) Roberts, P. J. Biol.: Targets Ther. 2013,
a) Chelucci, G. Chem. Soc. Rev. 2006, 35, 1230-1243. b) Gibson, V. C.; Redshaw, C.; Solan, G. A. Chem. Rev. 2007, 107, 1745-1776. c)
Kostin, G. A.; Mikhailov, A. A.; Kuratieva, N. V.; Pischur, D. P.; Zharkov, D. O.; Grin, I. R. New J. Chem. 2017, 41, 7758-7765. d) Putta, V.
P. R. K.; Gujjarappa, R.; Vodnala, N.; Gupta, R.; Pujar, P. P.; Malakar, C. C. Tetrahedron Lett. 2018, 59, 904-908. e) Gujjarappa, R.; Maity,
S. K.; Hazra, C. K.; Vodnala, N.; Dhiman, S.; Kumar, A.; Beifuss, U.; Malakar, C. C. Eur. J. Org. Chem. 2018, 4628-4638 and references
cited there in. f) Kaldhi, D.; Vodnala, N.; Gujjarappa, R.; Nayak, S.; Ravichandiran, V.; Gupta, S.; Hazra, C. K.; C. C. Malakar, Tetrahedron
Lett. 2019, 60, 223-229.
8.
9.
a) Hantzsch, A. R. Ber. Dtsch. Chem. Ges. 1881, 14, 1637-1638. b) Chichibabin, A. E.; Zeide, O. A. J. Russ. Phys.-Chem. Soc. 1906, 37, 1229. c)
Tschitschibabin, A. E. J. Prakt. Chem. 1924, 107, 122-128. d) Bohlmann, F.; Rahtz, D. Chem. Ber. 1957, 90, 2265-2272. e) Meth-Cohn, O.; Narine,
B.; Tarnowski, B. J. Chem. Soc., Perkin Trans. 1 1981, 1531-1536. f) Meth-Cohn, O.; Westwood, K. T. J. Chem. Soc., Perkin Trans. 1 1984, 1173-
1182. g) Nakamichi, N.; Kawashita, Y.; Hayashi, M. Org. Lett. 2002, 4, 3955-3957.
a) McCormick, M. M.; Duong, H. A.; Zuo, G.; Louie, J. J. Am. Chem. Soc. 2005, 127, 5030-5031. b) Movassaghi, M.; Hill, M. D. J. Am. Chem.
Soc. 2006, 128, 4592-4593. c) Trost, B. M.; Gutierrez, A. C. Org. Lett. 2007, 9, 1473-1476. d) Manning, J. R.; Davies, H. M. L. J. Am. Chem.
Soc. 2008, 130, 8602-8603. e) Parthasarathy, K.; Jeganmohan, M.; Cheng, C. H. Org. Lett. 2008, 10, 325-328. f) Chiba, S.; Xu, Y.-J.; Wang, Y.-
F. J. Am. Chem. Soc. 2009, 131, 12886-12887. g) Wang, Y.-F.; Toh, K. K.; Jian Ng, E. P.; Chiba, S. J. Am. Chem. Soc. 2011, 133, 6411-6421.
h) He, Z.; Dobrovolsky, D.; Trinchera, P.; Yudin, A. K. Org. Lett. 2013, 15, 334-337. i) Neely, J. M.; Rovis, T. J. Am. Chem. Soc. 2013, 135,
66-69. j) Zhao, M.-N.; Hui, R.-R.; Ren, Z.-H.; Wang, Y.-Y.; Guan, Z.-H. Org. Lett. 2014, 16, 3082-3085. k) Bai, Y.; Tang, L.; Huang, H.; Deng,
G.-J. Org. Biomol. Chem. 2015, 13, 4404-4407. l) Hardegger, L. A.; Habegger, J.; Donohoe, T. J. Org. Lett. 2015, 17, 3222-3225. m) Wu, X.;
Zhang, J.; Liu, S.; Gao, Q.; Wu, A. Adv. Synth. Catal. 2016, 358, 218-225. n) Hilf, J. A.; Holzwarth, M. S.; Rychnovsky, S. D. J. Org. Chem.