RSC Advances
Page 4 of 5
DOI: 10.1039/C5RA07584J
that ketone 1 has priority to react with ammonium acetate to 30 synthesis of symmetrical and unsymmetrical pyridines.
afford imine intermediate 8, which is easily converted to
intermediate
9
via tautomerization. Subsequently, the
Acknowledgements
intermediate 9 combines with formaldehyde provided by
DMSO to give intermediate 10. With the help of I2,
intermediate 10 is oxidized into intermediate 11. Addition of 1
to 11 generates intermediate 12, which gives intermediate 13
via a intramolecular condensation. Finally, losing a molecule
of water, intermediate 13 is transformed into the desired
We are grateful to the National Natural Science Foundation of
China (21172079), the Science and Technology Planning Project
of Guangdong Province (2011B090400031), and Guangdong
35 Natural Science Foundation (10351064101000000).
5
10 product 14 (path b). For nonꢀmethyl ketones, the reaction
may undergo path a and/or path b. In addition, it should be
pointed out that if the imine intermediate 8 was formed from a
methyl ketone it would be less likely to tautomerize to
enamine 9 due to the lower stability of lessꢀalkyl substituted
15 C=C bonds. So methyl ketones do not follow path b.
Notes and references
1
(a) G. D. Henry, Tetrahedron, 2004, 60, 6043; (b) A. Gueiffier, S.
Mavel, M. Lhassani, A. Elhakmaoui, R. Snoeck, G. Andrei, O.
Chavignon, J. C. Teulade, M. Witvrouw, J. Balzarini, E. D. Clercq
and J. P. Chapat, J. Med. Chem., 1998, 41, 5108; (c) F. Sha and X.
Huang, Angew. Chem., Int. Ed., 2009, 48, 3458; (d) Z. He, D.
Dobrovolsky, P. Trinchera and A. K. Yudin, Org. Lett., 2013, 15, 334;
(e) F. Durola, J. P. Sauvage and O. S. Wenger, Chem. Commun.,
2006, 171.
40
45
50
55
60
65
NH4I
NH3 + HI
(3)
(4)
(5)
O
S
S
+
I2
+
H2O
2
(a) W. Gati, M. M. Rammah, M. B. Rammah, F. Couty and G. Evano,
J. Am. Chem. Soc., 2012, 134, 9078; (b) S. B. Liu and L. S.
Liebeskind, J. Am. Chem. Soc., 2008, 130, 6918; (c) J. A. Varela and
C. Saá, Chem. Rev., 2003, 103, 3787; (d) J. P. Wan, Y. Y. Zhou and
S. Cao, J. Org. Chem., 2014, 79, 9872; (e) N. D. Rycke, G. Berionni,
F. Couty, H. Mayr, R. Goumont and O. R. P. David, Org. Lett., 2011,
13, 530; (f) D. Srimani, Y. B. David and D. Milstein, Chem.
Commun., 2013, 49, 6632.
+
2 HI
(CH3)2SO
CH3SH
+
HCHO
path a:
O
R2
R1
R2
R1
R2
R2
1
3
4
(a) R. L. Frank and R. P. Seven, J. Am. Chem. Soc., 1949, 71, 2629;
(b) F. L. Muller, C. Allais, T. Constantieux and J. Rodriguez, Chem.
Commun., 2008, 4207; (c) H. T. AbdelꢀMohsen, J. Conrad and U.
Beifuss, Green Chem., 2012, 14, 2686; (d) T. J. Donohoe, J. A.
Basutto, J. F. Bower and A. Rathi, Org. Lett., 2011, 13, 1036.
(a) Y. Wei and N. Yoshikai, J. Am. Chem. Soc., 2013, 135, 3756; (b)
D. Srimani, Y. BenꢀDavid and D. Milstein, Chem. Commun., 2013,
49, 6632; (c) Y. F. Wang, K. K. Toh, E. P. J. Ng and S. Chiba, J. Am.
Chem. Soc., 2011, 133, 6411; (d) C. X. Wang, X. C. Li, F. Wu and B.
S. Wan, Angew. Chem., Int. Ed., 2011, 50, 7162; (e) I. Nakamura, D.
Zhang and M. Terada, J. Am. Chem. Soc., 2010, 132, 7884.
M. N. Zhao, R. R. Hui, Z. H. Ren, Y. Y. Wang and Z. H. Guan, Org.
Lett., 2014, 16, 3082.
NH
O
NH2
NH4OAc
-AcOH
O
R1
R1
R1
R1
R1
R1
R2
R2
R2
R2
-H2O
-H2O
4
1
3
2
O
C
H
H
OH
O
R2
R1
R2
R1
R2
-H2O
N
I2
NH2
NH2
R1
R1
R1
R1
R2
R2
R2
2HI
7
6
5
path b:
5
6
7
O
R2
R1
Y. Bai, L. C. Tang, H. W. Huang and G. J. Deng, Org. Biomol. Chem.,
2015, 13, 4404.
D. J. Keddie, T. E. Johnson, D. P. Arnold and S. E. Bottle, Org.
Biomol. Chem., 2005, 3, 2593.
1
-H2O
NH4OAc
-AcOH
O
2HI
H
C H
R2
R1
R2
R1
R2
70 8 (a) F. Luo, C. D. Pan, L. P. Li, F. Chen and J. Cheng, Chem. Commun.,
2011, 47, 5304; (b) C. Dai, Z. Q. Xu, F. Huang, Z. K. Yu and Y. F.
Gao, J. Org. Chem., 2012, 77, 4414; (c) G. D. Yin, B. H. Zhou, X. G.
Meng, A. X. Wu and Y. J. Pan, Org. Lett., 2006, 8, 2245.
NH2
NH
OH
O
R2
R2
R1
R1
NH2
I2
NH2
9
8
10
11
O
R1
9
(a) Y. J. Jiang and T. P. Loh, Chem. Sci., 2014, 5, 4939; (b) G. Q.
Yuan, J. H. Zheng, X. F. Gao, X. W. Li, L. B. Huang, H. J. Chen and
H. F. Jiang, Chem. Commun., 2012, 48, 7513.
1
OH
75
80
85
O
R2
R1
R2
R1
R2
R1
R2
R1
-H2O
-H2O
HO
R1
H2N
R1
10 (a) J. J. Qian, Z. G. Zhang, Q. F. Liu, T. X. Liu and G. S. Zhang, Adv.
Synth. Catal., 2014, 356, 3119; (b) H. Cao, S. Lei, N. Y. Li, L. B.
Chen, J. Y. Liu, H. Y. Cai, S. X. Qiu and J. W. Tan, Chem. Commun.,
2015, 51, 1823; (c) H. Y. Fei, J. T. Yu, Y. Jiang, H. Guo and J.
Cheng, Org. Biomol. Chem., 2013, 11, 7092; (d) Z. G. Zhang, Q.
Tian, J. J. Qian, Q. F. Liu, T. X. Liu, L. Shi and G. S. Zhang, J. Org.
Chem., 2014, 79, 8182.
11 X. Y. Ren, J. B. Chen, F. Chen and J. Cheng, Chem. Commun., 2011,
47, 6725;
12 (a) R. S. Xu, J. P. Wan, H. Mao and Y. J. Pan, J. Am. Chem. Soc.,
2010, 132, 15531; (b) Y. Ashikari, T. Nokami and J. I. Yoshida, Org.
Lett., 2012, 14, 938; (c) Y. F. Liang, K. Wu, S. Song, X. Y. Li, X. Q.
Huang and N. Jiao, Org. Lett., 2015, 17, 876.
R2
N
N
R2
14
13
12
Scheme 3 Proposed reaction mechanism.
In conclusion, a convenient and efficient method has been
20 developed for the preparation of symmetrical and
unsymmetrical pyridines via ammonium iodideꢀpromoted
cyclization of ketones with DMSO and ammonium acetate. In
this reaction system, DMSO is used not only as an effective
reaction medium, but also as the source of C4 or C6 for the
25 formation of pyridines. It is worth mentioning that a mixture
of two regioisomers, or only symmetrical or unsymmetrical
product is obtained when nonꢀmethyl ketones are used as
substrates, while methyl ketones alwalys gives unsymmetrical
pyridines. The present work provides a new strategy for the
90 13 X. F. Gao, X. J. Pan, J. Gao, H. W. Huang, G. Q. Yuan and Y. W. Li,
Chem. Commun., 2015, 51, 210.
14 X. F. Gao, X. J. Pan, J. Gao, H. F. Jiang, G. Q. Yuan and Y. W. Li,
Org. Lett., 2015, 17, 1038.
4
| Journal Name, [year], [vol], 00–00
This journal is © The Royal Society of Chemistry [year]