reported,5 but previous studies on the reductive conjugate
addition with nickel6 and cobalt7 catalysts were limited to
electrophilic olefins without β-substitution or with two
activating groups.8 Montgomery reported a conjugate
additionꢀaldol reaction,6f,g but the analogous silyl enol
ether formation has not been reported. Finally, the use of
haloalkanes as substrates also introduces the additional
challenge of β-hydride elimination,9 and only a few exam-
ples have been published.10
(1a) or the haloalkane (2a) provided similar results (entries
9 and 10respectively). Thus, the lesscostlycomponent may
be used in excess.
Table 1. Reductive Coupling of Cyclohexenone with 2-Bromo-
heptanea
Herein we report an approach to direct reductive con-
jugate addition reactions (Table 1) that addresses these
challenges. Preliminary mechanistic studies suggest a gen-
eral strategy for the development of cross-selective reduc-
tive coupling reactions.
In preliminary studies,11 the best yields of silyl enol
ether 4a were obtained from reactions containing Ni/L1
catalyst, chlorotriethylsilane (3a), and DMF solvent
(Table 1, entry 1).12 Reactions conducted without ligand
L1 (2,20:60,200-tri-tert-butyl-terpyridine) resulted in the
slow consumption of starting materials (entry 2). The use
of pyridine or bipyridine (L2) in reactions instead of L1
resulted in the formation of large amounts of dimer 5
(entries 3 and 4 respectively). Reactions conducted without
TES-Cl (3a) consumed both 2-cyclohexen-1-one (1a) and
2-bromoheptane (2a) but produced only small amounts
of the corresponding ketone product (entry 5). Lastly,
reactions conducted with a slight excess of either the enone
yield 4ab yield 5
entry
change from optimized conditions
None
(%)
(%)
1
76
6c
26
2
No ligand (omit L1)
6
3
4ꢀ12 mol % pyridine in place of L1
4 mol % L2 in place of L1
No chlorotriethylsilane (3a)
No nickel
Ni(acac)2 in place of NiCl2(glyme)e
No Mn powder
5ꢀ7
23
4
15
74
5
4c,d
3c
0
6
0
7
77
38
8
NR
66ꢀ74
65ꢀ68
77f
NR
25ꢀ36
21ꢀ25
16
(5) Stoichiometric: Ni: (a) Johnson, J. R.; Tully, P. S.; Mackenzie,
P. B.; Sabat, M. J. Am. Chem. Soc. 1991, 113, 6172. (b) Manchand, P. S.;
Yiannikouros, G. P.; Belica, P. S.; Madan, P. J. Org. Chem. 1995, 60,
9
1.2ꢀ1.4 equiv of 1a to 1.0 equiv of 2a
1.2ꢀ1.6 equiv of 2a to 1.0 equiv of 1a
1 mol % NiCl2(glyme) and L1
10 mol % NiCl2(glyme) and L1
10
11
12
ꢀ
6574. (c) Bonjoch, J.; Sole, D.; Garcia-Rubio, S.; Bosch, J. J. Am. Chem.
Soc. 1997, 119, 7230. (d) Nicolaou, K. C.; Roecker, A. J.; Follmann, M.;
Baati, R. Angew. Chem., Int. Ed. 2002, 41, 2107. Cu: (e) Petrier, C.;
Dupuy, C.; Luche, J. L. Tetrahedron Lett. 1986, 27, 3149. (f) Shen, Z.-L.;
Cheong, H.-L.; Loh, T.-P. Tetrahedron Lett. 2009, 50, 1051 and refer-
ences cited therein.
33
59
a Reactions were run on 0.5 mmol scale in 2 mL of DMF for 14ꢀ24 h.
b Uncorrected GC yield vs dodecane internal standard, mixture of regio-
and stereoisomers. See Supporting Information for details. c Both start-
ing materials remained (76ꢀ87% by GC). d Ketone product obtained
instead of enol ether 4a. e Ni(acac)2 is 17¢/mmol vs $2.88/mmol for
NiCl2(glyme). f Reaction time was 36 h.
ꢀ ꢀ
(6) Nickel-catalyzed: Review: (a) Condon, S.; Nedelec, J.-Y. Synthe-
sis 2004, 3070. Chemical reductants: (b) Boldrini, G. P.; Savoia, D.;
Tagliavini, E.; Trombini, C.; Ronchi, A. U. J. Organomet. Chem. 1986,
301, C62. (c) Lebedev, S. A.; Lopatina, V. S.; Petrov, E. S.; Beletskaya, I. P.
J. Organomet. Chem. 1988, 344, 253. (d) Sustmann, R.; Hopp, P.; Holl, P.
Tetrahedron Lett. 1989, 30, 689. (e) Yu, S.; Berner, O. M.; Cook, J. M. J.
Am. Chem. Soc. 2000, 122, 7827. (f) Subburaj, K.; Montgomery, J. J. Am.
Chem. Soc. 2003, 125, 11210. (g) Chrovian, C. C.; Montgomery, J. Org.
Lett. 2007, 9, 537. (h) Gong, H.; Andrews, R. S.; Zuccarello, J. L.; Lee, S. J.;
The scope of our new reductive coupling process is
summarized in Scheme 1 (next page). Several different
silicon reagents were effective promoters for reactions of
2-bromoheptane (2a) with 2-cyclohexen-1-one (1a), pro-
viding silyl enol ether products 4aꢀc which possess a range
of stabilities.11
ꢀ
Gagne, M. R. Org. Lett. 2009, 11, 879. (i) Kim, H.; Lee, C. Org. Lett. 2011,
13, 2050–2053. Electrochemical methods: (j) Gosden, C.; Pletcher, D. J.
ꢀ
Organomet. Chem. 1980, 186, 401. (k) Condon-Gueugnot, S.; Leonel, E.;
ꢀ ꢀ
ꢀ
Nedelec, J.-Y.; Perichon, J. J. Org. Chem. 1995, 60, 7684.
(7) Co-catalyzed: Chemical: (a) Shukla, P.; Hsu, Y.-C.; Cheng, C.-H.
ꢀ
J. Org. Chem. 2006, 71, 655. (b) Amatore, M.; Gosmini, C.; Perichon, J.
A variety of haloalkanes (2) reacted with enone 1a to
provide silyl enol ethers (4dꢀj) in good yield (Scheme 1).
2-Iodoheptane reacted much faster than 2-bromohep-
tane (2 h vs 18 h), and 2-chloroheptane was unreactive
under these conditions. The conjugate additionꢀenolate
trapping reaction tolerates a variety of cyclic haloalkanes,
including a tetrahydropyran, (4d, e, j), and ester (4h), or
nitrile (4i) functionality. 2-Bromocyclohexenone provides
a high yield of product 4m without loss of the vinylic
bromide.
J. Org. Chem. 2006, 71, 6130. (c) Amatore, M.; Gosmini, C. Synlett 2009,
1073. Electrochemical: (d) Scheffold, R.; Dike, M.; Dike, S.; Herold, T.;
Walder, L. J. Am. Chem. Soc. 1980, 102, 3642. (e) Ozaki, S.; Nakanishi,
T.; Sugiyama, M.; Miyamoto, C.; Ohmori, H. Chem. Pharm. Bull. 1991,
39, 31. (f) Gomes, P.; Gosmini, C.; Nedelec, J.-Y.; Perichon, J. Tetra-
hedron Lett. 2000, 41, 3385.
(8) Generally only acrylates, methyl vinyl ketones, fumarates, or
maleates produce high yields. For a single coupling in 20% yield with
ethyl crotonate, see ref 6k.
(9) Rudolph, A.; Lautens, M. Angew. Chem., Int. Ed. 2009, 48, 2656.
(10) See refs 6c (2 examples), 6d (3 examples), 6h (glycosyl bromides
only), 7a (13 examples), 7d (intramolecular), and 7e (intramolecular).
(11) See Supporting Information for Tables S1 (more detailed opti-
mization table), S2 (solvent effects), and S3 (effect of silicon reagent) as
well as details for the TDAE and stoichiometric studies.
(12) Trialkylchlorosilane reagents accelerate copper-mediated con-
jugate addition reactions: (a) See ref 1d. (b) Lipshutz, B. H.; Dimock,
S. H.; James, B. J. Am. Chem. Soc. 1993, 115, 9283. (c) Frantz, D. E.;
Singleton, D. A. J. Am. Chem. Soc. 2000, 122, 3288.
ꢀ ꢀ
ꢀ
Even a tertiary haloalkane, tert-butyl bromide, coupled
to form product 4g with adjacent tertiary and quaternary
carbons in high yield and without detectable isomerization
to the iso-butyl product.13 Only a few examples of the use
Org. Lett., Vol. 13, No. 10, 2011
2767