980
D. SUDHAKAR, V. SIDDAIAH, AND C. V. RAO
3. Meyer, J. H.; Barlett, P. A. Macrocyclic inhibitors of penicillopepsin, 1: Design, synthesis,
and evaluation of an inhibitor bridged between P1 and P3. J. Am. Chem. Soc. 1998, 120,
4600.
4. Atherton, F. R.; Hasall, C. H.; Lambert, R. W. Synthesis and structure–activity relation-
ships of antibacterial phosphonopeptides incorporating (1-aminoethyl)phosphonic acid
and (aminomethyl)phosphonic acid. J. Med. Chem. 1986, 29, 29.
5. Allen, M. C.; Fuhrer, W.; Tuck, B.; Wade, R.; Wood, J. M. Renin inhibitors: Synthesis of
transition-state analog inhibitors containing phosphorus acid derivatives at the scissile
bond. J. Med. Chem. 1989, 32, 1652.
6. Kafarski, P.; Lejezak, B. Natural phosphate and potassium fluoride – doped natural
phosphate. Phosphorous, Sulfur Silicon Relat. Elem. 1991, 63, 193.
7. Birum, G. H. U.S. Patent 4,032,601, 1977; Chem. Abstr. 1977, 87, 135933.
8. Emsley, J.; Hall, D. The Chemistry of Phosphorous; Harpar and Row: London, 1976.
9. Klesezynska, H.; Bornarska, D.; Bielecki, K.; Sarapak, J. Antioxidative activity of some
phenoxy and organophosphorous compounds. Cell Mol. Biol. Lett. 2002, 7, 929.
10. Smith, W. W.; Bartlett, P. A. Macrocyclic inhibitors of penicillopepsin, 3: Design, syn-
thesis, and evaluation of an inhibitor bridged between P2 and P10. J. Am. Chem. Soc.
1998, 120, 4622.
11. Changtao, Q.; Taishing, H. One-pot synthesis of a-amino phosphonates from aldehydes
using lanthanide triflate as a catalyst. J. Org. Chem. 1998, 63, 4125.
12. Ramu, B. C.; Hajra, A.; Jana, J. General procedure for the synthesis of a-amino phospho-
nates from aldehydes and ketones using indium(III) chloride as a catalyst. Org. Lett. 1999,
1, 1141.
13. Joly, G. D.; Jacobsen, E. N. Thiourea-catalyzed enantioselective hydrophosphonylation
of imines: Practical access to enantiomerically enriched a-amino phosphonicacids.
J. Am. Chem. Soc. 2004, 126, 4102.
14. Bhagat, S.; Chakraborti, A. K. An extremely efficient three-component reaction of
aldehydes=ketones, amines, and phosphites (Kabachnik–Fields reaction) for the synthesis
of a-aminophosphonates catalyzed by magnesium perchlorate. J. Org. Chem. 2007,
72, 1263.
15. Saito, B.; Egami, H.; Katsuki, T. Synthesis of an optically active Al(salalen) complex and
its application to catalytic hydrophosphonylation of aldehydes and aldimines. J. Am.
Chem. Soc. 2007, 129, 1978.
16. Bhanushali, M. J.; Nandurkar, N. S.; Jagtap, S. P.; Bhanage, B. M. ZrOCl2-8H2O: An
efficient catalyst for one-pot synthesis of a-amino phosphonates under solvent-free
conditions. Synth. Commun. 2009, 39, 845.
17. Das, B.; Balasubramanyam, P.; Krishnaiah, M.; Veeranjaneyulu, B.; Reddy, G. C. Iodine-
catalyzed efficient hydrophosphonylation of N-tosyl aldimines. J. Org. Chem. 2009, 74,
4393.
18. Das, B.; Chowdhury, N. Amberlyst-15: An efficient reusable heterogeneous catalyst
for aza-Michael reactions under solvent-free conditions. J. Mol. Catal. A: Chem. 2007,
263, 212.
19. Maheswara, M.; Siddaiah, V.; Damu, G. L. V.; Koteswara Rao, Y.; Venkata Rao, C.
A solvent-free synthesis of coumarines via Pachmann condensation using heterogeneous
catalyst. J. Mol. Catal. A: Chem. 2006, 255, 49.
20. Jennings, W. B.; Lovely, C. J. The titanium tetrachloride – induced syntheis of
N-phosphinoylimines and N-sulphonylimines directly from aromatic aldehydes. Tetra-
hedron 1991, 47, 5561.
21. Chemla, F.; Hebbe, V.; Normant, J.-F. An easy synthesis of aliphatic and aromatic
N-sulfonyl aldimines. Synthesis 2000, 75.