A. Maresca, C. T. Supuran / Bioorg. Med. Chem. Lett. 21 (2011) 1334–1337
1337
9. (a) Supuran, C. T.; Scozzafava, A. Bioorg. Med. Chem. 2007, 15, 4336; (b)
Temperini, C.; Cecchi, A.; Scozzafava, A.; Supuran, C. T. Bioorg. Med. Chem. Lett.
2008, 18, 2567; (c) Supuran, C. T. Curr. Pharm. Des. 2008, 14, 603; (d) Temperini,
C.; Cecchi, A.; Scozzafava, A.; Supuran, C. T. Org. Biomol. Chem. 2008, 6, 2499; (e)
Temperini, C.; Cecchi, A.; Scozzafava, A.; Supuran, C. T. J. Med. Chem. 2009, 52,
322; (f) Temperini, C.; Cecchi, A.; Scozzafava, A.; Supuran, C. T. Bioorg. Med.
Chem. 2009, 17, 1214.
10. (a) Ebbesen, P.; Pettersen, E. O.; Gorr, T. A.; Jobst, G.; Williams, K.; Kienninger,
J.; Wenger, R. H.; Pastorekova, S.; Dubois, L.; Lambin, P.; Wouters, B. G.;
Supuran, C. T.; Poellinger, L.; Ratcliffe, P.; Kanopka, A.; Görlach, A.; Gasmann,
M.; Harris, A. L.; Maxwell, P.; Scozzafava, A. J. Enzyme Inhib. Med. Chem. 2009,
24, 1; (b) Ahlskog, J. K. J.; Dumelin, C. E.; Trüssel, S.; Marlind, J.; Neri, D. Bioorg.
Med. Chem. Lett. 2009, 19, 4851.
11. (a) Casini, A.; Antel, J.; Abbate, F.; Scozzafava, A.; David, S.; Waldeck, H.;
Schäfer, S.; Supuran, C. T. Bioorg. Med. Chem. Lett. 2003, 13, 841; (b) Vitale, R.
M.; Pedone, C.; Amodeo, P.; Antel, J.; Wurl, M.; Scozzafava, A.; Supuran, C. T.;
De Simone, G. Bioorg. Med. Chem. 2007, 15, 4152; (c) Alterio, V.; Monti, S. M.;
Truppo, E.; Pedone, C.; Supuran, C. T.; De Simone, G. Org. Biomol. Chem. 2010, 8,
3528.
Compound 13 was synthesised by reacting (1S)-(+)-10-camphorsulfonyl
chloride 2 (1.19 mmol, 300 mg) with 4-(2-Aminoethyl)benzenesulfonamide 5
(1.19 mmol, 238.3 mg) following the general procedure mentioned above. The
crude was purified by silica gel column chromatography eluting with 2.5%
MeOH in DCM to afford compounds 13 as white solid in 70% yield. Mp 140–
142 °C, ½a 2D0 +11.1, silica gel TLC Rf 0.27 (MeOH/DCM 2.5%), mmax (KBr) cmꢀ1
,
ꢂ
3250 (N–H), 2954 (C–H), 1741 (C@O), 1599 (aromatic), 1328 (SO2–NH), dH
(400 MHz, DMSO-d6) 0.83 (3H, s, 9-H3), 1.03 (3H, s, 8-H3), 1.39–1.44 (1H, m, 6-
H), 1.49–1.56 (1H, m, 7-H), 1.92–1.93 (1H, m, 4-H), 1.94–2.01 (1H, m, 6-H),
2.06–2.08 (1H, m, 4-H), 2.31–2.38 (1H, m, 7-H), 2.32–2.39 (1H, m, 5-H), 2.86–
2.92 (3H, m, 20-H2, 10-H), 3.26–3.32 (3H, m, 10-H2, 10-H), 7.29 (2H, s, SO2NH2,
exchange with D2O), 7.46–7.50 (2H, m, 2 ꢁ 40-H), 7.78–7.80 (2H, m, 2 ꢁ 50-H),
dC (100 MHz, DMSO-d6) 215.6 (C-1), 144.2 (ipso), 143.1 (ipso), 130.3 (C-40),
126.8 (C-50), 58.7 (C-2), 48.5 (C-10), 48.4 (C-3), 44.5 (C-10), 42.9 (C-4), 42.8 (C-
5), 36.5 (C-20), 27.2 (C-6), 25.3 (C-7), 20.3 (C-8), 20.3 (C-9), m/z (ESI-) 413.1
([MꢀH]ꢀ 100%), 827.3 ([2MꢀH]ꢀ 18%), m/z (ESI+) 415.2 ([M+H]+ 100%), 829.3
([2M+H]+ 50%).
(Z)-5-(((1R)-7,7-Dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl)methylsulfonylimino)-
4-methyl-4,5-dihydro-1,3,4-thiadiazole-2-sulfonamide (16)
12. (a) Dodgson, S. J. J. Appl. Physiol. 1987, 63, 2134; (b) Nishimori, I.; Vullo, D.;
Innocenti, A.; Scozzafava, A.; Mastrolorenzo, A.; Supuran, C. T. J. Med. Chem.
2005, 48, 7860.
8
9
13. Dodgson, S. J.; Cherian, K. Am. J. Physiol. 1989, 257, E791.
3
14. (a) Spencer, I. M.; Hargreaves, I.; Chegwidden, W. R. Biochem. Soc. Trans. 1988,
16, 973; (b) Chegwidden, W. R.; Spencer, I. M. Comp. Biochem. Physiol. 1996,
115B, 247; (c) Chegwidden, W. R.; Dodgson, S. J.; Spencer, I. M. The Roles of
Carbonic Anhydrase in Metabolism, Cell Growth and Cancer in Animals. In The
Carbonic Anhydrases—New Horizons; Chegwidden, W. R., Edwards, Y., Carter, N.,
Eds.; Birkhäuser: Basel, 2000; pp 343–363.
15. (a) Lynch, C. J.; Fox, H.; Hazen, S. A.; Stanley, B. A.; Dodgson, S. J.; Lanoue, K. F.
Biochem. J. 1995, 310, 197; (b) Hazen, S. A.; Waheed, A.; Sly, W. S.; Lanoue, K. F.;
Lynch, C. J. FASEB J. 1996, 10, 481.
7
5
4
1
6
2
10
O
S
2' SO2NH2
S
O
N
O
1'
N
N
16. (a) Picard, F.; Deshaies, Y.; Lalonde, J.; Samson, P.; Richard, D. Obes. Res. 2000, 8,
656; (b) Supuran, C. T. Exp. Opin. Ther. Patents 2003, 13, 1545; (c) Kim, C. S. J.
Fam. Pract. 2003, 52, 600; (d) Gadde, K. M.; Franciscy, D. M.; Wagner, H. R., 2nd;
Krishnan, K. R. JAMA 2003, 289, 1820.
3'
17. (a) Supuran, C. T.; Ilies, M. A.; Scozzafava, A. Eur. J. Med. Chem. 1998, 33, 739; (b)
Scozzafava, A.; Menabuoni, L.; Mincione, F.; Briganti, F.; Mincione, G.; Supuran,
C. T. J. Med. Chem. 2000, 43, 4542; (c) Ilies, M.; Supuran, C. T.; Scozzafava, A.;
Casini, A.; Mincione, F.; Menabuoni, L.; Caproiu, M. T.; Maganu, M.; Banciu, M.
D. Bioorg. Med. Chem. 2000, 8, 2145.
Compound 16 was synthesised by reacting (1R)-(ꢀ)-10-camphorsulfonyl
chloride
(0.08 mmol, 200 mg) with derivative 71 (0.08 mmol, 185 mg)
1
following the general procedure mentioned above. The crude was purified by
silica gel column chromatography eluting with 3% MeOH in DCM to afford
compounds 16 as white solid in 46% yield. Mp 248–250 °C, ½a D20
ꢀ47.5, silica
ꢂ
18. Sulfonamides 3–6 and sulfonyl chlorides 1, 2 used for the synthesis were
commercially available from Sigma–Aldrich (Milan, Italy), and were used
without further purification. The synthesis of compound 7 was carried out as
reported in literature.1 All CA isozymes were recombinant ones produced and
purified in our laboratory as described earlier.2,3 Reactions of (1R)-(ꢀ)-10-
camphorsulfonyl chloride 1 and (1S)-(+)-10-camphorsulfonyl chloride 2 (0.3 g,
1.0 equiv) with amino derivatives 3–7 (1.0 equiv) were carried out at 0° to
room temperature in Schotten–Baumann conditions under nitrogen
atmosphere, in the presence of a stoichiometric amount of dropwised dry
TEA (1.0 equiv for 3, 5, 6 and 2.0 equiv for 4, 7), in dry DMF as solvent (2 ml).
When complete (monitoring by TLC), reactions were quenched with crushed
ice, extracted with ethyl acetate (20 ml), washed with 1 N HCl (2 ꢁ 10 ml) and
brine (2 ꢁ 10 ml). The collected organic phase was dried on anhydrous Na2SO4,
filtered and evaporated under vacuum. The crude was purified by silica gel
column chromatography eluting with n-hexane/ethyl acetate or DCM/
methanol to afford compounds 8–17 as white solids in medium yields.
Examples of several compounds prepared in this way are provided below:
4-(2-(((1S)-7,7-Dimethyl-2-oxobicyclo[2.2.1]heptan-1-
gel TLC Rf 0.27 (MeOH/DCM 3%), mmax (KBr) cmꢀ1, 3265 (N–H), 2962 (C–H),
1736 (C@O), 1654 (C@N), 1372 (SO2–NH), dH (400 MHz, DMSO-d6) 0.82 (3H, s,
9-H3), 1.06 (3H, s, 8-H3), 1.42–1.47 (1H, m, 6-H), 1.59–1.66 (1H, m, 7-H), 1.94–
1.98 (1H, m, 4-H), 1.94–2.02 (1H, m, 6-H), 2.07–2.10 (1H, m, 4-H), 2.32–2.44
(1H, m, 7-H), 2.33–2.43 (1H, m, 5-H), 3.14–3.17 (1H, d, J 14.8, 10-H), 3.43–3.47
(1H, d, J 14.8, 10-H), 3.74 (1H, s, 30-H), 8.60 (2H, s, SO2NH2, exchange with D2O),
dC (100 MHz, DMSO-d6) 215.4 (C-1), 165.7 (C-20), 157.0 (C-10), 58.5 (C-2), 50.5
(C-10), 48.7 (C-3), 42.9 (C-4), 42.8 (C-5), 38.6 (C-30), 27.2 (C-6), 25.2 (C-7), 20.1
(C-8), 20.1 (C-9), m/z (ESI-) 407.0 ([MꢀH]ꢀ 100%), 815.0 ([2MꢀH]ꢀ 8%), m/z
(ESI+) 409.1 ([M+H]+ 100%), 817.2 ([2M+H]+ 5%).
19. Khalifah, R. G. J. Biol. Chem. 1971, 246, 2561. An Applied Photophysics stopped-
flow instrument has been used for assaying the CA catalysed CO2 hydration
activity.18 Phenol red (at
a concentration of 0.2 mM) has been used as
indicator, working at the absorbance maximum of 557 nm, with 20 mM Hepes
(pH 7.5) as buffer, and 20 mM Na2SO4 (for maintaining constant the ionic
strength), following the initial rates of the CA-catalyzed CO2 hydration reaction
for a period of 10–100 s. The CO2 concentrations ranged from 1.7 to 17 mM for
the determination of the kinetic parameters and inhibition constants. For each
inhibitor at least six traces of the initial 5–10% of the reaction have been used
for determining the initial velocity, in triplicate measurements. The
uncatalyzed rates were determined in the same manner and subtracted from
the total observed rates. Stock solutions of inhibitor (0.1 mM) were prepared in
distilled-deionized water and dilutions up to 0.01 nM were done thereafter
with distilled-deionized water. Inhibitor and enzyme solutions were
preincubated together for 15 min at room temperature prior to assay, in
order to allow for the formation of the E–I complex. The inhibition constants
yl)methylsulfonamido)ethyl)benzene sulfonamide (13)
8
9
3
7
4
5
6
1
2
10
O
were obtained by non-linear least-squares methods using PRISM 3, as reported
S
11,17
O
earlier,
and represent the mean from at least three different
NH
O
determinations. CA isoforms were recombinant ones obtained in house as
reported earlier.11,17
1'
2'
20. Pacchiano, F.; Aggarwal, M.; Avvaru, B. S.; Robbins, A. H.; Scozzafava, A.;
McKenna, R.; Supuran, C. T. Chem. Commun. 2010, 46, 8371.
21. (a) D’Ambrosio, K.; Masereel, B.; Thiry, A.; Scozzafava, A.; Supuran, C. T.; De
Simone, G. Chem. Med. Chem. 2008, 3, 473; (b) Güzel, Ö.; Temperini, C.;
Innocenti, A.; Scozzafava, A.; Salman, A.; Supuran, C. T. Bioorg. Med. Chem. Lett.
2008, 18, 152.
3'
4'
5'
6'
SO2NH2