Tuneable Ligand Scaffold for Iron SCO Complexes
thesis of aldehydes 4, amines 7 and complexes 8 and details of the
susceptibility measurements.
If the molecular structures of 8a, 8e and 8f are com-
pared, only minor changes in the Fe–N distances are found.
Even the distances N1···N4 directly bound to the biphenyl
bridge vary only slightly: 3.0068(62) Å in 8a, 3.0304(32) Å
in 8e and 3.0607(31) Å in 8f. Even though the differences
in N1···N4 are on the verge of significance they correlate
well with the order found for T1/2 and ΔH. A similar corre-
lation is found for other structure parameters, for example,
strains in the biphenyl bridge can be estimated by differ-
ences among the torsion angles C6–C1–C7–C12 and C2–
C1–C7–C8, which should be zero in unstrained biphenyls
but differ by 2.8(10)° in 8a, 5.0(4)° in 8e and 7.8(4)° in 8f.
This shows that repulsion of the substituents placed on C8
and C2, separated by four bonds to the donating amine
nitrogens N1 and N4, influence the spin state of the Fe2+
ion. One would expect that the methyl groups and bromine
atoms in 8e and 8f, respectively, are very close; indeed with
a distance of 3.24 Å the two methyl substituents in 8e are
closer then the sum of van der Waals radii (2ϫ2.0 Å), while
in contrast the distance Br1···Br2 (3.71 Å) in 8f is larger
than the sum of the van der Waals radii (2ϫ1.8 Å). The
electronic influence on T1/2 of different substitution pat-
terns in the bridges A in 8e–g is expected to be rather low
as bromine and methyl groups show only small inductive
and mesomeric effects; moreover there is no correlation be-
tween electronic properties with respect to +/–M nor +/–I
Acknowledgments
We would like to acknowledge the Fonds der Chemischen Industrie
for financial support (Liebig Grant to H. P.). We would also like
to thank Prof. H. Lang and Dr. T. Rüffer for valuable discussions.
[1] a) E. König, K. Madeja, Inorg. Chem. 1967, 6, 48–55; b) W. A.
Baker Jr., H. M. Bobonich, Inorg. Chem. 1964, 3, 1184–1188.
[2] a) J. A. Real, A. B. Gaspar, M. C. Munoz, Dalton Trans. 2005,
2062–2079; b) O. Sato, J. Tao, Y. Z. Zhang, Angew. Chem. 2007,
119, 2200–2236; Angew. Chem. Int. Ed. 2007, 46, 2152–2187;
c) P. Gamez, J. S. Costa, M. Quesada, G. Aromi, Dalton Trans.
2009, 7845–7853.
[3] a) P. Gütlich, A. Hauser, Coord. Chem. Rev. 1990, 97, 1–22; b)
P. Gütlich, A. Hauser, H. Spiering, Angew. Chem. 1994, 106,
2109–2141; Angew. Chem. Int. Ed. Engl. 1994, 33, 2024–2054.
[4] a) P. Gütlich, Y. Garcia, H. A. Goodwin, Chem. Soc. Rev. 2000,
29, 419–427; b) H. Toftlund, J. J. McGarvey, Top. Curr. Chem.
2004, 233, 151–166.
[5] a) B. Weber, Coord. Chem. Rev. 2009, 253, 2432–2449; b) V.
Niel, A. L. Thompson, M. C. Munoz, A. Galet, A. E. Goeta,
J. A. Real, Angew. Chem. 2003, 115, 3890–3893; Angew. Chem.
Int. Ed. 2003, 42, 3760–3763; c) S. Bonhommeau, G. Molnar,
A. Garlet, A. Zwick, J.-A. Real, J. J. McGarvey, A. Boussek-
sou, Angew. Chem. 2005, 117, 4137–4141; Angew. Chem. Int.
Ed. 2005, 44, 4069–4073; d) M. Ohba, K. Yoneda, G. Agusti,
M. C. Munoz, A. B. Gaspar, J. A. Real, M. Yamasaki, H.
Ando, Y. Kakao, S. Sakaki, S. Kitagawa, Angew. Chem. 2009,
121, 4861–4865; Angew. Chem. Int. Ed. 2009, 48, 4767–4771;
e) V. Martinez, A. B. Gaspar, M. C. Munoz, G. V. Bukin, G.
Levchenko, J. A. Real, Chem. Eur. J. 2009, 15, 10960–10971; f)
A. Y. Verat, N. Ould-Moussa, E. Jeanneau, B. Le Guennic, A.
Bousseksou, S. A. Borshch, G. S. Matouzenko, Chem. Eur. J.
2009, 15, 10070–10082; g) M. Yamada, H. Hagiwara, H. To-
rigoe, N. Matsumoto, M. Kojima, F. Dahan, J.-P. Tuchagues,
N. Re, S. Iijima, Chem. Eur. J. 2006, 12, 4536–4549; h) X. Bao,
J.-L. Liu, J.-D. Leng, Z. Lin, M.-L. Tong, M. Nihei, H. Oshio,
Chem. Eur. J., DOI: 10.1002/chem.201001179; i) J. Klingele, D.
Kaase, J. Hilgert, G. Steinfeld, M. H. Klingele, J. Lach, Dalton
Trans. 2010, 39, 4495–4507.
effects of R2 – R4 on the SCO temperature T1/2
.
Conclusions
In summary we have gained access to a new ligand sys-
tem that allows fine tuning of the ligand field strength in
Fe2+ complexes. The design is very flexible and allows vari-
ous substitution arrangements, either in the biphenyl or in
the bipyridyl moieties, or in both of them. With the help of
this variable pattern we were able to achieve precise control
of the Fe2+ SCO and the corresponding SCO temperature
T1/2 in these systems. Most susceptible for substitution ef-
fects are the positions on C8 and C2, because of the in-
duced steric strains in the biphenyl bridge A. If substituents
on C8 and C2 can control the spin state of the Fe2+ ion
through the spatial arrangement of the donor atoms N1
and N4 then the spin state of the Fe2+ ion should also effect
donor atoms bound to C8 and C2, therefore it is our aim
to expand this ligand system to dinuclear complexes.
[6] a) B. Weber, C. Carbonera, C. Desplances, J.-F. Letard, Eur. J.
Inorg. Chem. 2008, 1589–1598; b) T. Ayers, S. Scott, J. Goins,
N. Caylor, D. Hathcock, S. J. Slattery, D. L. Jameson, Inorg.
Chim. Acta 2000, 307, 7–12; c) M. Koikawa, K. B. Jensen, H.
Matsushima, T. Tokii, H. Toftlund, J. Chem. Soc., Dalton
Trans. 1998, 1085–1086; d) L. J. Wilson, D. Georges, M. A.
Hoselton, Inorg. Chem. 1975, 14, 2968–2975.
[7] B. Weber, F. A. Walker, Inorg. Chem. 2007, 46, 6794–6803.
[8] J. A. Kitchen, N. G. White, M. Boyd, B. Moubaraki, K. S.
Murray, P. D. W. Boyd, S. Brooker, Inorg. Chem. 2009, 48,
6670–6679.
[9] a) B. Weber, J. Obel, D. Henner-Vasquez, W. Bauer, Eur. J.
Inorg. Chem. 2009, 5527–5534; b) L. L. Martin, K. S. Hagen,
A. Hauser, R. L. Martin, A. M. Sargeson, J. Chem. Soc.,
Chem. Commun. 1988, 1313–1315; c) H. Spiering, T. Kohlhaas,
H. Romstedt, A. Hauser, C. Bruns-Yilmaz, J. Kusz, P. Guetlich,
Coord. Chem. Rev. 1999, 190–192, 629–647; d) S. Schenker,
P. C. Stein, J. A. Wolny, C. Brady, J. J. McGarvey, H. Toftlund,
A. Hauser, Inorg. Chem. 2001, 40, 134–139; e) J. J. McGarvey,
H. Toftlund, A. H. R. Al-Obaidi, K. P. Taylor, S. E. J. Bell, In-
org. Chem. 1993, 32, 2469–2472; f) S. G. Telfer, B. Bocquet,
A. F. Williams, Inorg. Chem. 2001, 40, 4818–4820; A. H. R. Al-
Obaidi, K. B. Jensen, J. J. McGarvey, H. Toftlund, B. Jensen,
S. E. J. Bell, J. G. Carroll, Inorg. Chem. 1996, 35, 5055–5060.
[10] a) T. Ayers, S. Scott, J. Goins, N. Caylor, D. Hathcock, S. J.
Slattery, D. L. Jameson, Inorg. Chim. Acta 2000, 307, 7–12; b)
Experimental Section
CCDC-786979 (for 7c), -786980 (for 8a), -786981 (for 8b), -786982
(for 8c), -786983 (for 8e) and -786984 (for 8f) contain the supple-
mentary crystallographic data for this paper. These data can be
obtained free of charge from The Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
Supporting Information (see footnote on the first page of this arti-
cle): Details of the X-ray structure analyses (Table S1) on 7c, 8a–
c,e,f, ORTEP diagrams (Figure S1), table of selected bond lengths
and angles (Table S2), as well as experimental details for the syn-
Eur. J. Inorg. Chem. 2011, 1249–1254
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
1253