Inorganic Chemistry
COMMUNICATION
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: boncella@lanl.gov.
’ ACKNOWLEDGMENT
R.E.J. and L.P.S. thank the Seaborg Institute (Los Alamos
National Laboratory) and the LANL LDRD program for partial
support of this work. E.J.S. acknowledges financial support from
the University of Pennsylvania. E.J.S. and J.M.K. are grateful for
partial support from the NSF MRSEC program under Award
DMR-0520020.
’ REFERENCES
(1) (a) Arney, D. S. J.; Smith, W. H.; Burns, C. J. J. Am. Chem. Soc.
1990, 112, 3237–3239. (b) Arney, D. S. J.; Burns, C. J. J. Am. Chem. Soc.
1993, 115, 9840–9841. (c) Arney, D. S. J.; Burns, C. J. J. Am. Chem. Soc.
1995, 117, 9448–9460.
Figure 2. Magnetic data for 4 recorded from 2 to 300 K at 0.1 T and
0ꢀ7 T at 2 K (inset). The magnetic moments of 4 per uranium ion are
2.65 and 0.63 μB at 300 and 2 K, respectively.
(2) (a) Stewart, J. L.; Andersen, R. A. New J. Chem. 1995,
19, 587–595. (b) Diaconescu, P. L.; Arnold, P. L.; Baker, T. A.; Mindiola,
D. J.; Cummins, C. C. J. Am. Chem. Soc. 2000, 122, 6108–6109.
(3) Berthet, J.-C.; Thuꢀery, P.; Ephritikhine, M. Angew. Chem., Int. Ed.
2008, 47, 5586–5589.
(4) For a recent review highlighting the synthesis of transition-metal
imido dihalides, see: Zarubin, D. N.; Ustynyuk, N. A. Russ. Chem. Rev.
2006, 75, 671–707.
(5) Spencer, L. P.; Schelter, E. J.; Yang, P.; Gdula, R. L.; Scott, B. L.;
Thompson, J. D.; Kiplinger, J. L.; Batista, E. R.; Boncella, J. M. Angew.
Chem., Int. Ed. 2009, 48, 3795–3798.
(6) Brennan, J. G.; Andersen, R. A.; Zalkin, A. J. Am. Chem. Soc. 1988,
110, 4554–4558.
kT. The low-symmetry crystal fields of 4 and 6 partially quench
the orbital angular momentum of the formally ground-state 3H4
term determined for the 5f2 ions using LꢀS coupling.13
The temperature-dependent data for 4 and 6, collected at 0.1
T, are essentially identical. With decreasing temperature, both
compounds show a monotonic decrease in their χT values, due to
thermal depopulation of the crystal-field levels. At 2 K, the
compounds attain χT values of 0.099 (4) and 0.094 (6) emu K
molꢀ1 consistent with singlet ground states. Field-dependent
data for 4 (inset, Figure 2) and 6 (inset, Figure S1 in the SI) do
not saturate and attain values of 0.36 (4) and 0.34 (6) μB at 7 T.
The field-dependent data are also consistent with the reported data
for low-symmetry uranium(IV) complexes with singlet ground
states.14
(7) (a) Wiley, R. O.; Von Dreele, R. B.; Brown, T. M. Inorg. Chem.
1980, 9, 3351–3356. (b) Kraft, S. J.; Fanwick, P. E.; Bart, S. C. Inorg.
Chem. 2010, 49, 1103–1110.
As was observed for other dimeric uranium(IV) complexes,
there is no direct evidence of magnetic coupling in the tempera-
ture-dependent data for 4 and 6. The dominance of the uranium-
(IV) crystal-field effects on their magnetic behavior prevents the
simple detection of magnetic coupling in these complexes.15
In this Communication, we have demonstrated that
monoimidouranium(IV) complexes with the general formula
U(NR)(X)2(L)n (R = tBu, 2,6-iPr2C6H3, 2-tBuC6H4; X = Cl, I;
L = tBu2bpy, n = 1; L = THF, n = 2, 4) can be synthesized in a
facile manner from UX4 and 2 equiv of a primary amide. This
simple approach promises to open up a new frontier in organoi-
midouranium chemistry, allowing for the synthesis of complexes
that possess significant steric and electronic control at the metal
center. Importantly, this methodology offers tremendous poten-
tial to generate imido complexes of other actinide elements, in
particular transactinide derivatives, which could greatly expand
our understanding of these multiply bonded heavy-element
systems.
(8) For
a
recent review highlighting imidouranium(V)
chemistry, see: Graves, C. R.; Kiplinger, J. L. Chem. Commun.
2009, 3831–3853.
(9) Burns, C. J.; Smith, W. H.; Huffman, J. C.; Sattelberger, A. P.
J. Am. Chem. Soc. 1990, 112, 3237–3239.
(10) The value of 1.958(8) Å for the UꢀNimido distance in 5
compares quite favorably with the corresponding distance of 1.931(5)
Å for 2. For a more complete list of relevant bond lengths and angles, see
the SI.
(11) Attempts to obtain X-ray-quality single crystals of 4ꢀ6 as
pyridine or 4-tert-butylpyridine adducts have been unsuccessful.
(12) (a) Lam, O. P.; Heinemann, F. W.; Meyer, K. C. R. Chimie 2010,
13, 803–811. (b) Broderick, E. M.; Gutzwiller, N. P.; Diaconescu, P. L.
Organometallics 2010, 29, 3242–3251. (c) Rinehart, J. D.; Bartlett, B. M.;
Kozimor, S. A.; Long, J. R. Inorg. Chim. Acta 2008, 361, 3534–3538. (d)
Schelter, E. J.; Yang, P.; Martin, R. L.; Scott, B. L.; Thompson, J. D.;
Jantunen, K. C.; Hay, P. J.; Morris, D. E.; Kiplinger, J. L. Inorg. Chem.
2007, 46, 7477–7488.
(13) Boudreaux, E. A.; Mulay, L. N. Theory and Applications of
Molecular Paramagnetism; Wiley: New York, 1976.
(14) Schelter, E. J.; Wu, R.; Scott, B. L.; Thompson, J. D.; Cantat, T.;
John, K. D.; Batista, E. R.; Morris, D. E.; Kiplinger, J. L. Inorg. Chem.
2010, 49, 924–933.
’ ASSOCIATED CONTENT
(15) (a) Lukens, W. W.; Walter, M. D. Inorg. Chem. 2010,
49, 4458–4465. (b) Schelter, E. J.; Veauthier, J. M.; Graves, C. R.; John,
K. D.; Scott, B. L.; Thompson, J. D.; Pool-Davis-Tournear, J. A.; Morris,
D. E.; Kiplinger, J. L. Chem.—Eur. J. 2008, 14, 7782–7790.
S
Supporting Information. Complete details of the pre-
b
paration and characterization of 2ꢀ6, including X-ray crystal-
lographic details (as a CIF file) of 2 and 4ꢀ6, and magnetic data
for 6. This material is available free of charge via the Internet at
4237
dx.doi.org/10.1021/ic200377b |Inorg. Chem. 2011, 50, 4235–4237