In a first attempt to sample the reactivity of the enamine
radical cation [2b]ꢀ+, a second microreactor was inserted
between the ESI needle and the first microreactor in which
[2b]ꢀ+ was generated as described above (Fig. S1, ESIw). In the
3 (a) H. Jang, J. Hong and D. W. C. MacMillan, J. Am. Chem. Soc.,
2007, 129, 7004; (b) H. Kim and D. W. C. MacMillan, J. Am. Chem.
Soc., 2008, 130, 398; (c) T. H. Graham, C. M. Jones, N. T. Jui and
D. W. C. MacMillan, J. Am. Chem. Soc., 2008, 130, 16494;
(d) M. Amatore, T. D. Beeson, S. P. Brown and D. W.
C. MacMillan, Angew. Chem., 2009, 121, 5223 (Angew. Chem.,
Int. Ed., 2009, 48, 5121); (e) J. E. Wilson, A. D. Casarez and
D. W. C. MacMillan, J. Am. Chem. Soc., 2009, 131, 11332;
(f) J. C. Conrad, J. Kong, B. N. Laforteza and D. W. C.
MacMillan, J. Am. Chem. Soc., 2009, 131, 11640; (g) S. Rendler
and D. W. C. MacMillan, J. Am. Chem. Soc., 2010, 132, 5027;
(h) J. M. Um, O. Gutierrez, F. Schoenebeck, K. N. Houk and
D. W. C. MacMillan, J. Am. Chem. Soc., 2010, 132, 6001;
(i) N. T. Jui, E. C. Y. Lee and D. W. C. MacMillan, J. Am. Chem.
Soc., 2010, 132, 10015; (j) J. F. Van Humbeck, S. P. Simonovich,
R. R. Knowles and D. W. C. MacMillan, J. Am. Chem. Soc., 2010,
132, 10012.
4 (a) T. Koike and M. Akita, Chem. Lett., 2009, 38, 166; (b) N. Bui,
X. Ho, S. Mho and H. Jang, Eur. J. Org. Chem., 2009, 5309.
5 (a) Electrospray Ionization Mass Spectrometry, ed. R. B. Cole, John
Wiley & Sons, New York, 1997; (b) Applied Electrospray Mass
Spectrometry, ed. B. N. Pramanik, E. K. Ganguly and M. L. Gross,
CRC Press, Boca Raton, 2002.
6 (a) D. Plattner, Top. Curr. Chem., 225, 153; (b) L. S. Santos,
L. Knaack and J. O. Metzger, Int. J. Mass Spectrom., 2005, 286,
84; (c) L. S. Santos, Eur. J. Org. Chem., 2008, 235;
(d) C. A. Marquez, F. Fabbretti and J. O. Metzger, Angew. Chem.,
2007, 119, 7040 (Angew. Chem., Int. Ed., 2007, 46, 6915).
+
second microreactor, the solution of [2b]ꢀ was mixed with a
solution of TEMPO (Scheme 1a). The ESI spectra indeed
show the presence of the expected hydrolyzed trapping product
[4 + H]+ at m/z 276.2 (Fig. S2, ESIw). Similarly, the final
reaction product [5 + H]+ at m/z 223.1 was observed when a
solution of styrene (Scheme 1b) was added in the second
microreactor (Fig. S3, ESIw). We are currently optimizing the
conditions of the setup to further study these and other typical
reactions2,3 of enamine radical cations in detail to obtain more
insight into the nature and order of the reaction steps following
the formation of the enamine radical cation in SOMO catalysis.
We present direct experimental evidence for the selective
oxidation of an enamine to an enamine radical cation with a
one-electron oxidant under conditions of SOMO catalysis.
We thank the Deutsche Forschungsgemeinschaft (SFB 624
and SFB 813) for financial support.
Notes and references
7 (a) J. Griep-Raming, S. Meyer, T. Bruhn and J. O. Metzger, Angew.
Chem., 2002, 114, 2863 (Angew. Chem., Int. Ed., 2002, 41, 2738);
(b) S. Meyer, R. Koch and J. O. Metzger, Angew. Chem., 2003, 115,
4848 (Angew. Chem., Int. Ed., 2003, 42, 4700); (c) S. Furmeier and
J. O. Metzger, J. Am. Chem. Soc., 2004, 126, 14485;
(d) C. A. Marquez, H. Wang, F. Fabbretti and J. O. Metzger,
J. Am. Chem. Soc., 2008, 130, 17208.
1 (a) Asymmetric Organocatalysis, ed. A. Berkessel and H. Groger,
Wiley-VCH, Weinheim, 2005; (b) Enantioselective Organocatalysis,
ed. P. I. Dalko, Wiley-VCH, Weinheim, 2007; (c) B. Westermann,
M. Ayaz and S. S. van Berkel, Angew. Chem., 2010, 122, 858
(Angew. Chem., Int. Ed., 2010, 49, 846).
2 (a) T. D. Beeson, A. Mastracchio, J. Hong, K. Ashton and D. W.
C. MacMillan, Science, 2007, 316, 582; (b) S. Bertelsen, M. Nielsen
and K. A. Jørgensen, Angew. Chem., 2007, 119, 7500 (Angew.
Chem., Int. Ed., 2007, 46, 7356).
8 H. J. Jakobsen, S.-O. Lawesson, J. T. B. Marshall, G. Schroll and
D. H. Williams, J. Chem. Soc. B, 1966, 940.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 3293–3295 3295