This work was partly supported by
a
Grant-in-Aid
for Scientific Research on Innovative Areas (No. 20108007,
‘‘pi-Space’’) from MEXT, and a Grant-in-Aid for Young
Scientists B (No. 20750025) from JSPS. H. Z. thanks the
G-COE program of Tohoku University. We thank Dr
E. Kwon, Tohoku University, for X-ray measurement.
Notes and references
z Crystallographic data for 4b: C119H116N8Ni, Mw
=
1716.91,
monoclinic, space group P2/c (no. 13),
a
=
21.907(4),
b =
25.058(5), c = 22.196(4) A, b = 108.6367(5)1, V = 11 545(4) A3,
Z = 4, rcalcd = 0.988 g cmꢀ3, T = ꢀ100(2) 1C, 140 563 measured
reflections, 20 299 unique reflections (Rint = 0.0762), R = 0.0989
(I > 2s(I)), Rw = 0.2695 (all data), GOF = 1.163. CCDC 791481.
1 (a) The Porphyrin Handbook, ed. K. M. Kadish, K. M. Smith and
R. Guilard, Academic Press, San Diego, 2003, vol. 15–20;
(b)
Phthalocyanines: Properties and Applications,
ed.
C. C. Leznoff and A. B. P. Lever, Wiley-VCH, New York,
1989–1996, vol. 1–4.
2 (a) A. Meller and A. Ossko, Monatsh. Chem., 1972, 103, 150;
Fig. 3 Frontier molecular orbital diagrams of model compounds of
3a (left) and 4a (right).
(b) C. G. Claessens, D. Gonzalez-Rodrıguez and T. Torres, Chem.
´ ´
Rev., 2002, 102, 835.
3 J. E. Bloor, J. Schlabitz, C. C. Walden and A. Demerdac, Can. J.
Chem., 1964, 42, 2201.
molecule with the exception of the biphenyl moiety, which is
due to the twist of the azepine moiety (Fig. 3). This is
clearly different from Pcs,1 APPcs,6 and periphery expanded
low-symmetry Pc analogues7 in which the frontier molecular
orbitals are delocalized over the whole molecules. A change in
the main conjugation pathway due to the significant twist at
the azepine moiety causes destabilization of the HOMO and
LUMO+1. The HOMO–LUMO gap thus becomes smaller,
while the HOMO–LUMO+1 gap becomes larger. These
results are in good agreement with the observed large splitting
of the Q bands and the Faraday B terms. This variation of the
frontier molecular orbital diagram is essentially similar to
those of azachlorin-type molecules,4,15 indicating that the
electronic structure of AZPPc is rather similar to that of an
azachlorin molecule than that of Pc.
In conclusion, AZPPc was synthesized by using 2,20-
biphenyldicarbonitrile as a key synthetic precursor. The
enhanced distortion of the molecular structure due to the
steric congestion of the seven-membered ring and biphenyl
moiety was revealed by X-ray crystallographic analysis. The
inner seven-membered ring unit has less contribution to merge
the 18p annulenic conjugation system and the peripheral
conjugation system of the biphenyl unit. This results in
variation of the frontier molecular orbital diagram as exemplified
by the high-lying HOMO and LUMO+1. The absorption
spectrum of AZPPc is thus better illustrated by the azachlorin-
like electronic structure. It can be emphasized that by changing
the ring size in the core of Pc molecules, the contribution of
the peripheral aromatic unit can be altered, which leads to
significant changes in optical and electrochemical properties.
Furthermore, investigation along this direction also gives
insight into the nature of aromaticity of porphyrin16 and
phthalocyanine analogues, which is indispensable for a novel
molecular design in this field.
4 (a) R. P. Linstead and M. Whalley, J. Chem. Soc., 1952, 4839;
(b) T. Fukuda and N. Kobayashi, Dalton Trans., 2008, 4685.
5 (a) F. Fernandez-Lazaro, T. Torres, B. Hauschel and M. Hanack,
Chem. Rev., 1998, 98, 563; (b) M. Rodoriguez-Morgade, G. De La
Torre and T. Torres, in The Porphyrin Handbook, ed.
K. M. Kadish, K. M. Smith and R. Guilard, Academic Press,
San Diego, 2003, vol. 15.
6 (a) S. Shimizu, H. Zhu and N. Kobayashi, Chem.–Eur. J., 2010, 16,
11151; (b) N. Kobayashi, N. Sasaki and H. Konami, Inorg. Chem.,
1997, 36, 5674.
7 (a) N. Kobayashi, J. Mack, K. Ishii and M. J. Stillman, Inorg.
Chem., 2002, 41, 5350; (b) N. Kobayashi and T. Fukuda, J. Am.
Chem. Soc., 2002, 124, 8021.
8 Azepiphthalocyanine was named after its porphyrin analogue,
azepiporphyrin. J. C. Petryka, S. T. Chaney and T. D. Lash, Book
of Abstracts for the 213th National Meeting of the American
Chemical Society, San Francisco, CA, 1997, Abstract No. ORGN
298.
9 (a) M. D. Maree and T. Nyokong, J. Porphyrins Phthalocyanines,
2001, 5, 555; (b) S. E. Maree and T. Nyokong, J. Porphyrins
Phthalocyanines, 2001, 5, 782; (c) D. Wohrle, M. Eskes,
K. Shigehara and A. Yamada, Synthesis, 1993, 194.
10 G. Ege and E. Beisiege, Synthesis, 1974, 22.
11 S. Eu, T. Katoh, T. Umeyama, Y. Matano and H. Imahori, Dalton
Trans., 2008, 5476.
12 (a) T. Fukuda, E. A. Makarova, E. A. Luk’yanets and
N. Kobayashi, Chem.–Eur. J., 2004, 10, 117; (b) N. Kobayashi,
H. Miwa and V. N. Nemykin, J. Am. Chem. Soc., 2002, 124, 8007;
(c) H. Miwa, K. Ishii and N. Kobayashi, Chem.–Eur. J., 2004, 10,
4422.
13 J. Mack, M. J. Stillman and N. Kobayashi, Coord. Chem. Rev.,
2007, 251, 429.
14 (a) M. Gouterman, J. Chem. Phys., 1959, 30, 1139;
(b) M. Gouterman, J. Mol. Spectrosc., 1961, 6, 138.
15 Seco-porphyrazines also exhibit similar structural features and
optical properties. (a) N. S. Mani, L. S. Beall, A. J. P. White,
D. J. Williams, A. G. M. Barrett and B. M. Hoffman, J. Chem.
Soc., Chem. Commun., 1994, 1943; (b) A. G. M. Montalban,
S. J. Lange, L. S. Beall, N. S. Mani, D. J. Williams, A. J.
P. White, A. G. M. Barrett and B. M. Hoffman, J. Org. Chem.,
1997, 62, 9284.
16 T. D. Lash, S. A. Jones and G. M. Ferrence, J. Am. Chem. Soc.,
2010, 132, 12786.
c
3074 Chem. Commun., 2011, 47, 3072–3074
This journal is The Royal Society of Chemistry 2011