1686
J.R. Briggs et al. / Journal of Organometallic Chemistry 696 (2011) 1677e1686
This recrystallization process was performed three times resulting
in the isolation of the desired product as a white microcrystalline
Conditions: [Pd] ¼ 7.7 ꢂ 10ꢀ5 M (10.9 ppm), L/Pd ¼ 2 mol/mol,
[butadiene]initial ¼ 2.5 M, [MeOH]initial ¼ 12.7 M, T ¼ 90 ꢁC, reaction
time ¼ 2 h. Methylcyclohexane was added to bring the total reac-
tion volume to the same value. Reactions were conducted in sealed
Fischer-Porter tubes immersed in a constant temperature bath.
Experimental details are reported in the experimental section.
Maximum TON for 100% yield of 1 is w16,600.
solid (0.419 g, 49.3%). 1H NMR (C6D6):
d 3.16 (s, 6 H), 6.47e6.52 (m,
2 H), 6.71e6.77 (m, 2 H), 6.90e6.95 (m, 2 H), 7.08e7.15 (m, 2 H),
7.21e7.25 (m, 2 H), 7.31e7.37 (m, 2 H). 13C NMR (C6D6): 55.2, 110.6,
121.4, 125.1 (m), 130.7, 134.23, 134.25, 134.4, 134.7, 143.4, 161.8 (d,
15.7 Hz). 31P NMR (C6D6, externally referenced using H3PO4):
d
ꢀ24.6. 19F NMR (C6D6, externally referenced using CCl3F): ꢀ62.7.
Anal. Calcd for C21H18F3O2P: C, 64.62; H, 4.65, found: C, 64.85; H,
4.68. ESI-TOF-MS (Positive Mode) calcd for (M þ H)þ ion of
C21H18F3O2P: 391.107 amu, found 391.108 amu.
Appendix. Supplementary data
Supplementary data associated with the article can be found in
4.1.6. Preparation of Bis(2-methoxyphenyl)(3,5-difluorophenyl)
phosphine, L15
Chlorobis(2-methoxyphenyl)phosphine (0.666 g, 2.37 mmol)
was stirred in diethylether (30 mL) at 0 ꢁC as (3,5-difluorophenyl)
magnesium bromide (2.37 mmol, 4.74 mL of a 0.5 M solution in
diethylether) was added dropwise. This mixture was allowed to stir
overnight at room temperature. After the reaction period the
volatiles were removed and the residue was dissolved in benzene
and filtered to remove the salts. Removal of the volatiles from the
filtrate resulted in the isolation of a dark yellow residue which was
dissolved in a minimum amount of acetonitrile, filtered, and placed
in the glovebox freezer (ꢀ10 ꢁC) overnight during which time
crystals precipitated which were isolated by decanting off the
liquid and drying under vacuum. This recrystallization process was
repeated until the product was isolated as a white microcrystalline
References
[1] J.M. Takacs, in: E.W. Abel, G. Stone, G. Wilkinson, Series Eds, L.S. Hegadus, Vol.
Ed (Eds.), Comprehensive Organometallic Chemistry II, vol. 12, Chapt. 8.1,
Elsevier Science Ltd, Oxford, New York, Tokyo, 1995, p. 785.
[2] (a) E.J. Smutny, J. Am, Chem. Soc. 89 (1967) 6793;
(b) S. Takahashi, T. Shibano, N. Hagihara, Tetrahedron Lett. 8 (1967) 2451.
[3] A. Behr, M. Becker, T. Beckmann, L. Johnen, J. Leschinski, S. Reyer, Angew.
Chem. Int. Ed. 48 (2009) 3598.
[4] (a) B.J. Schaart, H.L. Pelt, G.B. Jacobsen, Continuous Process for the Telomeri-
zation of Conjugated Dienes U. S. Patent 5,254,782 (October 19, 1973);
(b) B. Estrine, S. Bouquillon, F. Hénin, J. Muzart, Eur. J. Org. Chem. (2004)
2914e2922;
(c) M. Basato, L. Crociani, F. Benvenuti, A.M.R. Galletti, G. Sbrana, J. Mol, Cat. A:
Chem. 145 (1999) 313;
(d) C.L. Edwards, Process for Producing Detergent Molecules Comprising an
Ether Linkage from Butadiene U. S. Patent 7,141,539 (November 28, 2006).
[5] E. Singer, R. Landgraf, D.J. Slamon, D. Eisenberg, Process for Production of
Ethers U. S. Patent 7,314,916 (January 1, 2008).
[6] R. Jackstell, S. Harkal, H. Jiao, A. Spannenberg, C. Borgmann, D. Röttger,
F. Nierlich, M. Elliot, S. Niven, K. Cavell, O. Navarro, M.S. Viciu, S.P. Nolan,
M. Beller, Chem. Eur. J. 10 (2004) 3891.
[7] F. Benvenuti, C. Carlini, M. Lami, M. Marchionna, R. Patrini, A.M.R. Galletti,
G. Sbrana, J. Mol, Cat. A: Chem. 144 (1999) 27.
[8] W. Keim, in: G.N. Schrauzer (Ed.), Transition Metals in Homogeneous Catal-
ysis, Marcel Dekker, New York, 1971.
[9] (a) P.W. Jolly, R. Mynott, B. Raspel, K.-P. Schick, Organometallics 5 (1986) 473;
(b) R. Benn, P.W. Jolly, R. Mynott, B. Raspel, G. Schenker, K.-P. Schick,
G. Schroth, Organometallics 4 (1985) 1945.
[10] F. Vollmüller, J. Krause, S. Klein, W. Mägerlein, M. Beller, Eur. J. Inorg. Chem.
(2000) 1825.
[11] M.J.-L. Tschan, E.J. Garcia-Suarez, Z. Freixa, H. Launay, H. Hagen, J. Benet-
Buchholz, P.W.N.M. van Leeuwen, J. Am. Chem. Soc. 132 (2010) 6463.
[12] D. Beigzadeh, Macro. React. Eng. 1 (2007) 331.
solid (0.350 g, 41.2%). 1H NMR (C6D6):
d 3.14 (s, 6 H), 6.39e6.49 (m,
2 H), 6.67e6.75 (m, 2 H), 6.90e7.17 (m, 7 H). 13C NMR (C6D6): 55.3,
104.0 (t, 25 Hz),110.7,116.5 (m),121.5,124.7 (d,14.2 Hz),130.8,134.1
(d, 2.2 Hz), 140.7, 161.8 (d, 16.0 Hz), 165.0 (m). 31P NMR (C6D6,
externally referenced using H3PO4):
d
ꢀ22.7. 19F NMR (C6D6,
externally referenced using CCl3F): ꢀ110.3 (m). Anal. Calcd for
C20H17F2O2P: C, 67.04; H, 4.78, found: C, 66.61; H, 4.72. ESI-TOF-MS
(Positive Mode) calcd for (M
359.101 amu, found 359.102 amu.
þ
H)þ ion of C20H17F2O2P:
4.1.7. ESI-MS analyses
All samples were transferred in Hamilton Gas-Tight Syringes to
a drybox adjacent to the mass spectrometer. The syringes were
subsequently removed from the drybox and infused directly into
a syringe needle adapter union on the Z-spray Electrospray probe of
a Waters-Q-ToF II Mass Spectrometer. This allowed the sample to be
manually infused from the syringe to the ESI probe without any
intervening tubing. In order to avoid carry-over between different
time-point injections, the probe was cleaned by infusing dry
methanol after each analysis. The Time of Flight (ToF) analyzer was
[13] (a) C.A. Tolman, Chem. Rev. 77 (1977) 313;
(b) F. Benvenuti, C. Carlini, M. Lami, M. Marchionna, R. Patrini, A.M.R. Galletti,
G. Sbrana, J. Mol, Cat. A: Chem. 144 (1999) 27.
[14] S.J. Chen, K.R. Dunbar, Inorg. Chem. 29 (1990) 588.
[15] US Patent 7,041,619, May 9, 2006, assigned to Kuraray.
[16] S.M. Maddock, M.G. Finn, Organometallics 19 (2000) 2684.
[17] K.L. Granberg, J.-E. Backwall, J. Am. Chem. Soc. 114 (1992) 6858.
[18] M. Grayson, P.T. Keough, J. Am, Chem. Soc. 82 (1960) 3919.
[19] J.R. Corfield, S. Trippett, J. Chem. Soc. D: Chem. Comm. 19 (1970) 1267.
[20] (a) S.E. Cremer, R.J. Chorvat, Tetetrahedron Lett. 4 (1966) 419;
(b) M.-C. Tseng, H.-C. Kan, Y.-H. Chu, Tetrahedron Lett. 48 (2007) 9085.
[21] B.C. Chang, W.E. Conrad, D.B. Denney, D.Z. Denny, R. Edelmaq, R.L. Powell,
D.W. White, J. Am. Chem. Soc. 93 (1971) 4004.
calibrated prior to analysis using a calibrant solution (2 l NaI/
mg/
m
0.05 g/ l CsI in 1/1 isopropanol/water) at a flow rate of 10 mL/min.
m
m
Data acquisition was performed with a cycle time of 1 scan/sec
(scan acquisition time: 0.88 s; interscan delay: 0.1 s) in the MS
[22] (a) S.E. Cremer, R.J. Chorvat, Tet. Lett. 4 (1966) 419e421;
(b) C. M- Tseng, H.-C. Kan, Y.-H. Chu, Tet, Lett. 48 (2007) 9085e9089.
[23] (a) PJ.C. Hausoul, P.C.A. Bruijnincx, R.J.M. Klein Gebbink, B.M. Weckhuysen,
Chem. Sus. Chem. 2 (2009) 855;
mode. The infusion rate was approximately 20e50
ml/min. The
following mass spectral conditions were utilized: MCP Detector:
2150 V; Resolution: 9000; Data Acquisition Mode: Continuum
Positive Ion Mode; Mass Scan: 50e2100 amu; Capillary Voltage:
2500 V; Cone Voltage: 20 V; Source Temperature: 110 ꢁC; Des-
olvation Temperature: 300 ꢁC; Desolvation Gas: Nitrogen at 60 psig.
In MS/MS mode, fragmentation of each component was carried out
separately with collision energies set to 25 V, 30 V, 35 V and 40 V.
The instrument was scanned at 0.5 scan per seconds and the mass
range was set to 100e1900 m/z.
(b) R. Palkovits, I. Nieddu, C.A. Kruithof, R.J.M. Klein Gebbink, B.M. Weckhuysen,
Chem. Eur. J. 14 (2008) 8995;
(c) R. Palkovits, I. Nieddu, R.J.M. Klein Gebbink, B.M. Weckhuysen, Chem. Sus.
Chem. 1 (2008) 193;
(d) R. Palkovits, A.N. Parvulescu, P.J.C. Hausoul, C.A. Kruithof, R.J.M. Klein Geb-
bink, B.M. Weckhuysen, Green Chem. 11 (2009) 1155.
[24] (a) M.R. Wilson, H. Liu, A. Prock, W.P. Giering, Organometallics 12 (1993) 2044;
(b) A. Fernandez, C. Reyes, M.R. Wilson, D.C. Woska, A. Prock, W.P. Giering,
Organometallics 16 (1997) 342.