activating agent for the fluorination reaction, as shown in
Scheme 1.
Table 1. Optimization of the Fluorination Reaction of 1aa
Scheme 1. Role of HF
iodine
time
(h)
yield
(%)b
entry
reagent
1
2
3
4
PhI(OAc)2
PhI(OAc)2
PhI(OCOCF3)2
PhIO
24
12
24
24
39
43
0
98
a The reaction was conducted at 40 °C by using 55% aqueous HF (10
mmol HF), a hypervalent iodine reagent (1.2 mmol), and 1a (1 mmol) in
CH2Cl2 (2 mL). b Isolated yield.
In order to prove the above-mentioned hypothesis, we
planned the fluorination reaction of 1,3-dicarbonyl com-
pounds. Synthesis of 2-fluoro-1,3-dicarbonyl compounds
has so far been performed by the fluorination reaction of
1,3-dicarbonyl compounds with F29 and various fluorinat-
ing agents such as XeF2,10 fluoroxy compounds,11 and
fluoronitrogen compounds.12 However, those many are
dangerous or expensive. The fluorination reaction of 1,
3-dicarbonyl compounds was recently reported by Hara and
Yoneda.13 They indicated that difluoroiodotoluene was a
useful fluorinating reagent. However, the difluoroiodoto-
luene was prepared by the reaction of iodosyltoluene with
aqueous HF.7 According to the above hypothesis, we
examined the direct fluorination of 1,3-dicarbonyl com-
pounds using a commercially available aqueous hydro-
fluoric acid and a hypervalent iodine compound, to
develop a convenient fluorination reaction. Here we want
to report for the first time a practical, direct fluorination of
Table 2. Direct Fluorination of 1,3-Dicarbonyl Compounds
with PhIO/aq. HF Reagent Systema
(9) Chambers, R. D.; Greenhall, M. P.; Hutchinson, J. Tetrahedron
1996, 52, 1–8.
(10) (a) Zajc, B.; Zupan, M. J. Chem. Soc., Chem. Commun. 1980,
759–760. (b) Yemul, S. S.; Kagan, H. B.; Setton, R. Tetrahedron Lett.
1980, 21, 277–280. (c) Zajc, B.; Zupan, M. J. Org. Chem. 1982, 47, 573–
575.
(11) (a) Inman, C. E.; Oesterling, R. E.; Tyczkowski, E. A. J. Am.
Chem. Soc. 1958, 80, 6533–6535. (b) Machleidt, H.; Hartmann, V.
Liebigs Ann. Chem. 1964, 679, 9–19. (c) Lerman, O.; Rozen, S. J. Org.
Chem. 1983, 48, 724–727. (d) Rozen, S.; Brand, M. Synthesis 1985, 665–
667. (d) Rozen, S.; Hebel, D. J. Org. Chem. 1990, 55, 2621–2623. (e)
Rozen, S.; Menahem, Y. Tetrahedron Lett. 1979, 20, 725–728. (f)
Stavber, S.; Zupan, M. J. Chem. Soc., Chem. Commun. 1981, 795–796.
(12) (a) Umemoto, T.; Fukami, S.; Tomizawa, G.; Harasawa, K.;
Kawada, K.; Tomita, K. J. Am. Chem. Soc. 1990, 112, 8563–8575. (b)
Resnati, G.; DesMarteau, D. D. J. Org. Chem. 1991, 56, 4925–4929. (c)
Banks, R. E.; Murtagh, V.; Tsiliopoulos, E. J. Fluorine Chem. 1991, 52,
389–401. (d) Xu, Z.-Q.; DesMarteau, D. D.; Gotoh, Y. J. Fluorine Chem.
1992, 58, 71–79. (e) Resnati, G.; DesMarteau, D. D. J. Org. Chem. 1992,
57, 4281–4284. (f) Banks, R. E.; Lawrence, N. J.; Popplewell, A. L. J.
Chem. Soc., Chem. Commun. 1994, 343–344. (g) Davis, F. A.; Han, W.;
Murphy, C. K. J. Org. Chem. 1995, 60, 4730–4737. (h) Cabrera, I.;
Appel, W. K. Tetrahedron 1995, 51, 10205–10208. (i) Umemoto, T.;
Nagayoshi, M.; Adachi, K.; Tomizawa, G. J. Org. Chem. 1998, 63,
3379–3385. (j) Frantz, R.; Hintermann, L.; Perseghini, M.; Broggini, D.;
Togni, A. Org. Lett. 2003, 5, 1709–1712. (k) Gupta, O. D.; Shreeve, J. M.
Tetrahedron Lett. 2003, 44, 2799–2801. (l) Stavber, G.; Zupan, M.;
Stavber, S. Tetrahedron Lett. 2007, 48, 2671–2673.
a Reaction conditions: substrate (1 mmol), PhIO (1.2 mmol), 55%
aqueous HF (10 mmol HF), and CH2Cl2 (2 mL) at 40 °C. b At room
temperature.
(13) (a) Hara, S.; Sekiguchi, M.; Ohmori, A.; Fukuhara, T.; Yoneda,
N. Chem. Commun. 1996, 1899–1900. (b) Yoshida, M.; Fujikawa, K.;
Sato, S.; Hara, S. ARKIVOC 2003, No. vi, 36–42.
Org. Lett., Vol. 13, No. 9, 2011
2393