1170
M. Šebová et al. / Polyhedron 30 (2011) 1163–1170
[5] H.-Y. Bu, Y.-J. Liu, Q.-F. Liu, J.-F. Jia, Acta Crystallogr. E61 (2005) m1986
(KATHAP).
[6] F. He, Y. Xi, J. Li, F. Zhang, Acta Crystallogr. E64 (2008) m1311 (RODWEN).
[7] X. Quezada-Buendia, A. Esparza-Ruiz, A. Pena-Hueso, N. Barba-Behrens, R.
Contreras, A. Flores-Parra, S. Bernes, S.E. Castillo-Blum, Inorg. Chim. Acta 361
(2008) 2759 (OGAMUF, HAVBIQ01, OGAMOZ).
MS ¼ ꢅ1=2 is ground state and that MS ¼ ꢅ3=2 refers to the ex-
cited state, then
= 2D > 0 holds true. For instance, the [CoCl4]2ꢁ
ion as found in Cs3CoCl5 possesses D2d symmetry and is slightly
elongated, while the same anion in Cs2CoCl4 has nearly C2v symme-
try and is slightly compressed; the former has D < 0, and the latter
has D > 0.
D
[8] Y.-P. Tong, S.-L. Zheng, X.-M. Chen, Eur. J. Inorg. Chem. (2005) 3734 (HAVBIQ,
HAVBOW).
[9] Y.-H. Zhao, Z.-M. Su, Y. Wang, X.-R. Hao, K.-Z. Shao, Acta Crystallogr. E62 (2006)
m2361 (GEPDAH).
Theoretical modeling with the generalized crystal-field theory
gave D = 10 cmꢁ1 for 2 when the spin-Hamiltonian approximation
[10] Y.-P. Tong, Acta Crystallogr. E61 (2005) m1771 (KANYEE).
[11] Y.-P. Tong, Y.-W. Lin, J. Chem. Crystallogr. 38 (2008) 613 (UFONAF).
[12] Y.-P. Tong, S.-L. Zheng, J. Mol. Struct. 841 (2007) 34 (XIHNIM).
[13] Y. Xi, J. Li, F. Zhang, Acta Crystallogr. E61 (2005) m1953 (MAVKAW).
[14] Y.-P. Tong, S.-L. Zheng, X.-M. Chen, Inorg. Chem. 44 (2005) 4270 (QAQFIY).
[15] A.K. Boudalis, J.M. Clemente-Juan, F. Dahan, V. Psycharis, C.P. Raptopoulou, B.
Donnadieu, Y. Sanakis, J.-P. Tuchagues, Inorg. Chem. 47 (2008) 11314
(TOQQOG, TOQQUM).
[16] Y.-P. Tong, Y.-W. Lin, Inorg. Chim. Acta 362 (2009) 2167 (FURSOB).
[17] W. Shi, Y. Liu, B. Liu, Y. Song, Y. Xu, H. Wang, Y. Sha, G. Xu, S. Styring, P. Huang,
J. Coord. Chem. 59 (2006) 119 (DEFREM).
[18] Q.-X. Li, X.-L. Yang, H.-B. Xu, Chin. J. Struct. Chem. 26 (2006) 149 (TEWJIP).
[19] A. Esparza-Ruiz, A. Pena-Hueso, I. Ramos-Garcia, A. Vasquez-Badillo, A. Flores-
Parra, R. Contreras, J. Organomet. Chem. 694 (2009) 269 (VOPCUZ, VOPDAG).
[20] B. Machura, M. Wolff, J. Kusz, R. Kruszynski, Polyhedron 28 (2009) 2949
(IGEWUN, IGEXAU, IGEXEY, IGEXIC, IGEXOI, IGEXUO).
is used. The splitting of the crystal-field multiplets is
D
= 17.8 cmꢁ1
= 1.
for the orbital reduction factor
j
= 0.9, and 20 cmꢁ1 when
j
To this end, the present communication represents a step for-
ward in getting magnetostructural D-correlations for Co(II) com-
plexes. These were extensively studied for a series of Ni(II)
complexes elsewhere [45–50].
4. Conclusions
The reported X-ray structure data for the complex 2 – [Co(sal-
bim)2] is not a simple redetermination of the already published
structure (KATHAP) since a different crystal system, different space
group and different hydrogen bond network has been found. The
measured X-ray powder diffractogram confirms that the powder
material used later in magnetic measurements is the complex 2
and not KATHAP. The electronic spectra exhibit transitions
that match the tetrahedral pattern. The magnetic data show a
considerable zero-field splitting of the 4B1(D2d) ground term
(D/hc = 67 cmꢁ1) which causes a marked deviation of the magne-
tization from its saturation value as well as a drop of the effective
magnetic moment at low temperature.
ˇ
[21] M. Vrbová, P. Baran, R. Boca, H. Fuess, I. Svoboda, W. Linert, U. Schubert, P.
Wiede, Polyhedron 19 (2000) 2195 (XELDOH, XELDUN).
[22] L.-J. Zhou, Y.-Y.-U. Wang, C.-H. Zhou, C.-J. Wang, Q.-Z. Shi, S.-M. Peng, Cryst.
Growth Des. 7 (2007) 300 (JEXNOQ).
[23] C.-K. Xia, W. Wu, Q.-Y. Chen, J.-M. Xie, Acta Crystallogr. E63 (2007) m2726
(TINRUE).
[24] C.-K. Xia, C.-Z. Lu, D.-Q. Yuan, Q.-Z. Zhang, X.-Y. Wu, J.-J. Zhang, D.-M. Wu, J.
Mol. Struct. 831 (2007) 195 (WEXQUM).
[25] S.-M. Peng, H.-F. Chen, Bull. Inst. Chem. Acad. Sin. 37 (1990) 49 (KOKFUL).
[26] SIR-97: A. Altomare, M.C. Burla, M. Camalli, G.L. Cascarano, C. Giacovazzo, A.
Guagliardi, A.G.G. Moliterni, G. Polidori, R. Spagna, J. Appl. Crystallogr. 32
(1999) 115.
[27] SHELXS-97 and SHELXL-97: G.M. Sheldrick, Acta Crystallogr. A64 (2008) 112.
[28] R.C. Clark, J.S. Reid, Acta Crystallogr. A51 (1995) 887.
[29] Oxford Diffraction, CRYSALIS-CCD and CRYSALIS-RED, Oxford Diffraction Ltd.,
Abingdon, England, 2010.
[30] MERCURY: C.F. Macrae, P.R. Edgington, P. McCabe, E. Pidcock, G.P. Shields, R.
Taylor, M. Towler, J. van de Streek, J. Appl. Crystallogr. 39 (2006) 453.
[31] J. Bernstein, R.E. Davis, L. Shimoni, N.-L. Chang, Angew. Chem., Int. Ed. Engl. 34
(1995) 1555.
[32] L. Benisvy, E. Bill, A.J. Blake, D. Collison, E.S. Davies, C.D. Garner, C.I. Guindy,
E.J.L. McInnes, G. McArdle, J. McMaster, C. Wilson, J. Wolowska, Dalton Trans.
(2004) 3647 (GAJTOB, GAJTER, GAJTIV).
[33] J.D. Crane, E. Sinn, B. Tann, Polyhedron 18 (1999) 1527 (WIPMAJ).
[34] C. Janiak, J. Chem. Soc., Dalton Trans. (2000) 3885.
[35] B. Moulton, M.J. Zaworotko, Chem. Rev. 101 (2001) 629.
[36] J.W. Steed, J.L. Atwood, Supramolecular Chemistry, second ed., Wiley,
Chichester, 2009.
The composition of the complex 3 = [Co(salbim)2]ꢀsalbimHꢀ
MeOH is confirmed by elemental analysis, IR spectra indicating a
CAO bond from the methanol solvent, a gradual mass loss on
TG/DTA experiments showing first a liberation of MeOH and then
liberation of salbimH, electron spectra that match a tetrahedral
pattern, and magnetic data since [Co(salbim)2] will bring too low
molar mass and [Co(salbim)2]ꢀ2salbimH too high. The magnetic
data again show a considerable zero-field splitting of the 4B1(D2d
)
ground term (D/hc = 55 cmꢁ1).
Acknowledgments
[37] M. Schröder, N.R. Champness, Supramolecular isomerism, in: J.L. Atwood, J.W.
Steed (Eds.), Encyclopedia of Supramolecular Chemistry, vol. 2, Taylor and
Francis, London, 2004, pp. 1420–1423.
Grant agencies (VEGA 1/0213/08, 1/1005/09, APVV 0202-10,
VVCE 0004-07) are acknowledged for the financial support.
ˇ
[38] R. Boca, Struct. Bonding 117 (2006) 1.
[39] M. Weissbluth, Struct. Bonding 2 (1967) 1.
Appendix A. Supplementary data
ˇ
[40] R. Boca, Coord. Chem. Rev. 248 (2004) 757.
ˇ
ˇ
ˇ
[41] B. Papánková, R. Boca, L. Dlhán, I. Nemec, J. Titiš, I. Svoboda, H. Fuess, Inorg.
Chim. Acta 363 (2010) 147.
CCDC 793545 and 793546 contain the supplementary crystallo-
graphic data for 1 and 2. These data can be obtained free of charge
Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail:
deposit@ccdc.cam.ac.uk. Supplementary data associated with
this article can be found, in the online version, at doi:10.1016/
[42] D. Nelson, L.W. ter Haar, Inorg. Chem. 32 (1993) 182.
[43] J. Krzystek, S.A. Zvyagin, A. Ozarowski, A.T. Fiedler, T.C. Brunold, J. Telser, J. Am.
Chem. Soc. 126 (2004) 2148.
[44] R.P. van Stapele, H.G. Beljers, P.F. Bongers, H. Zijlstra, J. Chem. Phys. 44 (1966)
3719.
ˇ
ˇ
ˇ
[45] P. Baran, M. Boca, R. Boca, A. Krutošíková, J. Miklovic, J. Pelikán, J. Titiš,
Polyhedron 24 (2005) 1510.
ˇ
[46] A. Mašlejová, R. Ivaniková, I. Svoboda, B. Papánková, L. Dlhán, D. Mikloš, H.
ˇ
Fuess, R. Boca, Polyhedron 25 (2006) 1823.
ˇ
ˇ
[47] R. Ivaniková, R. Boca, L. Dlhán, H. Fuess, A. Mašlejová, V. Mrázová, I. Svoboda, J.
Titiš, Polyhedron 25 (2006) 3261.
References
ˇ
ˇ
ˇ
ˇ
ˇ
[48] J. Titiš, R. Boca, L. Dlhán, T. Durceková, H. Fuess, R. Ivaniková, V. Mrázová, B.
Papánková, I. Svoboda, Polyhedron 26 (2007) 1523.
ˇ
[49] R. Boca, J. Titiš, In Coordination Chemistry Research Progress, Nova Science
[1] O. Kahn, J. Kröber, C. Jay, Adv. Mater. 4 (1992) 718.
[2] D. Gatteschi, Adv. Mater. 6 (1994) 635.
Publishers, New York, 2008. pp. 247–304.
ˇ
[50] J. Titiš, R. Boca, Inorg. Chem. 49 (2010) 3971.
[3] D.A. Horton, G.T. Bourne, M.L. Smythe, Chem. Rev. 103 (2003) 893.
[4] L.J. Walter, H. Freiser, Anal. Chem. 25 (1953) 127.