Drug Delivery Rev., 2008, 60, 1226; (c) C. Wang, X. Gao and X. Su,
Anal. Bioanal. Chem., 2010, 397, 1397; (d) M. De, P. S. Ghosh and
V. M. Rotello, Adv. Mater., 2008, 20, 4225.
7 (a) T. Trindade, P. O’Brien and N. L. Pickett, Chem. Mater., 2001,
13, 3843; (b) D. V. Talapin, A. L. Rogach, A. Kornowski,
M. Haase and H. Weller, Nano Lett., 2001, 1, 207;
(c) B. O. Dabbousi, J. RodriguezViejo, F. V. Mikulec,
J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen and
M. G. Bawendi, J. Phys. Chem. B, 1997, 101, 9463.
8 (a) H. Fan, E. W. Leve, C. Scullin, J. Gabaldon, D. Tallant,
S. Bunge, T. Boyle, M. C. Wilson and C. J. Brinker, Nano Lett.,
2005, 5, 645; (b) S. F. Wuister, I. Swart, F. van Driel, S. G. Hickey
and C. de Mello Donega, Nano Lett., 2003, 3, 503; (c) J. K. Oh,
J. Mater. Chem., 2010, 20, 8433; (d) J. B. Blanco-Canosa,
I. L. Medintz, D. Farrell, H. Mattoussi and P. E. Dawson,
J. Am. Chem. Soc., 2010, 132, 10027; (e) L. Liu, X. Guo, Y. Li
and X. Zhong, Inorg. Chem., 2010, 49, 3768.
Fig. 3 Imaging of photoluminescent QD 1 (5 nM) internalized in
HeLa cells after 3 h incubation. (a) Fluorescence image of QD 1 with
488 nm excitation. (b) Fluorescence image merged with differential
interference contrast (DIC) image.
9 (a) K. Susumu, H. Tetsuo Uyeda, I. L. Medintz, T. Pons,
J. B. Delehanty and H. Mattoussi, J. Am. Chem. Soc., 2007, 129,
13987; (b) Z. Fang, L. Liu, L. Xu, X. Yin and X. Zhong,
Nanotechnology, 2008, 19, 235603; (c) E. Muro, T. Pons,
N. Lequeux, A. Fragola, N. Sanson, Z. Lenkei and B. Dubertret,
J. Am. Chem. Soc., 2010, 132, 4556.
10 (a) S. Manokaran, A. Berg, X. Zhang, W. Chen and
D. K. Srivastava, J. Biomed. Nanotechnol., 2008, 4, 491;
(b) S. Manokaran, X. Zhang, W. Chen and D. K. Srivastava,
Biochim. Biophys. Acta, 2010, 1804, 1376.
Live cell confocal fluorescence imaging shows effective entry of
the particle to the cell enabled by electrostatic interaction
between positively charged QDs and negatively charged cell
membrane. As expected from prior cell uptake studies,19 the
intracellular fluorescence from QD 1 is punctate, indicating
vesicular entrapment of the QDs. The readily tunable surface
properties of these ligands, however, might enable the creation
of particles capable of escape into the cytosol.
11 (a) J. Lee, Y. Choi, J. Kim, E. Park and R. Song, ChemPhysChem,
2009, 10, 806; (b) H. Peng, L. Zhang, T. H. M. Kjallman, C. Soeller
¨
and J. Travas-Sejdic, J. Am. Chem. Soc., 2007, 129, 3048;
(c) T. Qiu, D. Zhao, G. Zhou, Y. Liang, Z. He, Z. Liu, X. Peng
and L. Zhou, Analyst, 2010, 135, 2394.
In summary we have demonstrated a two-step method for
the creation of permanently cationic QDs. This method
prevents uncontrolled aggregation during ligand exchange
process, resulting in high yields of cationic QD. The resultant
cationic QDs exhibit uniform dispersibility in aqueous
solution and high stability under biological conditions. The
stability and high cellular permeability of these cationic QDs
make them potentially useful imaging agents. Furthermore,
the tunability of the particle surface enables their application
in delivery and sensing applications.20
12 (a) M. V. Yezhelyev, L. F. Qi, R. M. O’Regan, S. Nie and X. H. Gao,
J. Am. Chem. Soc., 2008, 130, 9006; (b) J. Lee, Y. Choi, J. Kim,
E. Park and R. Song, ChemPhysChem, 2009, 10, 806.
13 (a) A. M. Mohs, H. W. Duan, B. A. Kairdolf, A. M. Smith and
S. M. Nie, Nano Res., 2009, 2, 500; (b) S. H. Wang, H. P. Song,
W. Y. Ong, M. Y. Han and D. J. Huang, Nanotechnology, 2009,
20, 425102.
14 (a) A. Verma and F. Stellacci, Small, 2010, 6, 12; (b) L. Hu, Z. Mao
and C. Gao, J. Mater. Chem., 2009, 19, 3108.
15 (a) J. Lee, J. Kim, E. Park, S. Jo and R. Song, Phys. Chem. Chem.
Phys., 2008, 10, 1739; (b) H. W. Duan and S. M. Nie, J. Am. Chem.
Soc., 2007, 129, 3333.
This research was supported by the NSF: (CHE-1025889,
VR), MRSEC facilities, and the DOE DE-FG02-04ER46141.
16 (a) S. L. Cumberland, M. G. Berrettini, A. Javier and G. F.
Strouse, Chem. Mater., 2003, 15, 1047; (b) H. Hiramatsu and
F. E. Osterloh, Langmuir, 2003, 19, 7003; (c) L. Hou, C. Wang,
L. Chen and S. Chen, J. Colloid Interface Sci., 2010, 349, 626.
17 (a) H. T. Uyeda, I. L. Medintz, J. K. Jaiswal, S. M. Simon and
H. Mattoussi, J. Am. Chem. Soc., 2005, 127, 3870; (b) K. Susumu,
I. L. Medintz, J. B. Delehanty, K. Boeneman and H. Mattoussi,
J. Phys. Chem. C, 2010, 114, 13526; (c) M. H. Stewart, K. Susumu,
B. C. Mei, I. L. Medintz, J. B. Delehanty, J. B. Blanco-Canosa,
P. E. Dawson and H. Mattoussi, J. Am. Chem. Soc., 2010, 132,
9804.
18 (a) W. Liu, M. Howarth, A. B. Greytak, Y. Zheng, D. G. Nocera,
A. Y. Ting and M. G. Bawendi, J. Am. Chem. Soc., 2008, 130,
1274; (b) W. R. Algar and U. J. Krull, ChemPhysChem, 2007, 8,
561; (c) V. V. Breus, C. D. Heyes and G. Ulrich Nienhaus, J. Phys.
Chem. C, 2007, 111, 18589.
19 (a) J. B. Delehanty, H. Mattoussi and I. L. Medintz, Anal. Bioanal.
Chem., 2009, 393, 1091; (b) J. B. Delehanty, C. E. Bradburne,
K. Boeneman, K. Susumu, D. Farrell, B. C. Mei, J. B. Blanco-
Canosa, G. Dawson, P. E. Dawson, H. Mattoussi and
I. L. Medintz, Integr. Biol., 2010, 2, 265.
20 (a) C. K. Kim, P. Ghosh and V. M. Rotello, Nanoscale, 2009, 1, 61;
(b) O. R. Miranda, B. Creran and V. M. Rotello, Curr. Opin.
Chem. Biol., 2010, 14, 1; (c) U. H. F. Bunz and V. M. Rotello,
Angew. Chem., Int. Ed., 2010, 49, 3268; (d) P. Zrazhevskiy,
M. Senawb and X. Gao, Chem. Soc. Rev., 2010, 39, 4326.
Notes and references
1 (a) M. Bruchez, M. Moronne, P. Gin, S. Weiss and
A. P. Alivisatos, Science, 1998, 281, 2013; (b) X. Michalet,
F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li,
G. Sundaresan, A. M. Wu, S. S. Gambhir and S. Weiss, Science,
2005, 307, 538.
2 U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke
and T. Nann, Nat. Methods, 2008, 5, 763.
3 (a) S. Rana, Y.-C. Yeh and V. M. Rotello, Curr. Opin. Chem. Biol.,
2010, 14, 828; (b) R. Hong, N. O. Fischer, A. Verma,
C. M. Goodman, T. S. Emrick and V. M. Rotello, J. Am. Chem.
Soc., 2004, 126, 739.
4 (a) K. E. Sapsford, T. Pons, I. L. Medintz and H. Mattoussi,
Sensors, 2006, 6, 925; (b) R. C. Somers, M. G. Bawendi and
D. G. Nocera, Chem. Soc. Rev., 2007, 36, 579; (c) M. F. Frasco
and N. Chaniotakis, Sensors, 2009, 9, 7266; (d) M. F. Frasco and
N. Chaniotakis, Anal. Bioanal. Chem., 2010, 396, 229;
(e) S. S. Agasti, S. Rana, M.-H. Park, C. K. Kim, C. C. You
and V. M. Rotello, Adv. Drug Delivery Rev., 2010, 162, 316.
5 I. L. Medintz, H. T. Uyeda, E. R. Goldman and H. Mattoussi,
Nat. Mater., 2005, 4, 435.
6 (a) X. H. Gao, L. L. Yang, J. A. Petros, F. F. Marshal,
J. W. Simons and S. M. Nie, Curr. Opin. Biotechnol., 2005, 16,
63; (b) A. M. Smith, H. W. Duan, A. M. Mohs and S. M. Nie, Adv.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 3069–3071 3071