A R T I C L E S
Kelley et al.
the ring A-ring C axis. Holzwarth et al.13 compared the self-
assembly characteristics of pyro-Chl a having a C60 rigidly
linked to its 3-position to those of the corresponding molecule
having a C60 flexibly attached at the less sterically hindered
173-position. They concluded that the self-assembly character-
istics of the pyro-Chl a should only be preserved by attaching
It is well known that the rates of both Dexter-type energy
transfer and electron transfer to or from metalloporphyrins
depend on the position of the macrocycle to which the donor
or acceptor is attached.24-28 The rates of these transfers, kDA
,
are given by kDA VDA2(FCWD), where VDA is the electronic
coupling matrix element and FCWD is the Franck-Condon
weighted density of states (see below).29-31 Since the matrix
element VDA depends on orbital overlap between the frontier
molecular orbitals of the metalloporphyrin and those of the donor
or acceptor,32 rates of Dexter-type energy transfer and electron
transfer depend on the electron density distributions within these
orbitals.24,33 The two highest occupied molecular orbitals
(HOMO and HOMO-1) within metalloporphyrins are nearly
degenerate and have electron density distributions that differ
greatly.34-36 The a1u orbital has significant electron density at
the â carbons of the porphyrin with little density at the meso
positions, while the opposite is true for the a2u orbital. The
energetic ordering of these two orbitals in the metalloporphyrin
depends on the nature and the position of the substituents
attached to the porphyrin.36 Substituting electron-donating
groups, e.g., phenyl rings or alkyl chains, at the meso positions
(5,10,15,20) of the porphyrin raises the energy of the a2u orbital
above that of the a1u orbital, making the a2u orbital the HOMO.
On the other hand, substitution of the â positions with similar
electron-releasing groups results in the a1u orbital being the
HOMO. This is consistent with EPR data obtained for zinc
meso-tetraphenylporphyrin radical cation, which shows that its
meso positions have significantly greater spin (and charge)
density compared to those at the â positions.36 It is also
consistent with EPR measurements on related zinc porphyrins
having a mix of both alkyl and aryl substituents at their meso
positions,37 which all show that the a2u orbital is the zinc
porphyrin HOMO. Generally, increased electron density at
particular peripheral carbon atoms of the porphyrin results in
stronger electronic coupling to molecules attached to those
positions.32 If the attached molecule can accept energy and/or
electrons from the porphyrin, the increased electronic coupling
leads to increased rates of energy and/or electron transfer.24,33
For example, Hayes et al.26 showed that a zinc porphyrin having
a pyromellitimide electron acceptor attached to a meso phenyl
group has a charge recombination rate that is 3 times faster than
that of a porphyrin in which the acceptor is attached to a
â-phenyl group.
C
60 to the 173-position. The ability to attach electron acceptors
to the Chl macrocycle in a rigid fashion without interfering with
functional groups that are essential to self-assembly is important
for developing photofunctional structures that carry out rapid,
directional energy and charge transport.1,2,16-20
The 20-position of Chl a offers a potential site for rigid
attachment of either redox or energy-transfer components that
should not interfere with self-assembly. Using the 20-position
of Chl a as a conduit for charge transport is unprecedented,
although several related synthetic chlorin-acceptor molecules
have been previously studied. Lindsey has prepared a series of
synthetic oxochlorin dyads in which zinc and magnesium
oxochlorins are linked to the corresponding free bases using
phenyl and phenylethynyl linkers.21-23 Laser flash photolysis
studies of these molecules show that energy transfer from the
metallo-oxochlorins to the free base is slower than that observed
for the corresponding porphyrin systems. This difference is
attributed to through-bond Dexter-type energy transfer, which
depends critically on the electron density distribution in the
frontier molecular orbitals of the donor and acceptor,21 as well
as the properties of the linker group.22 Kirmaier et al.23 have
studied electron transfer from similar metallo-oxochlorins to a
perylene-3,4:9,10-bis(dicarboximide) (PDI) molecule linked to
the 10-position of the oxochlorin using a diphenylacetylene
spacer. Photoexcitation of PDI in these dyads results in
competitive singlet-singlet energy transfer to the oxochlorin
1
and electron transfer from the oxochlorin to *PDI. Electron
transfer from the photoexcited oxochlorin to PDI is relatively
slow, even in polar solvents, due primarily to free energy
considerations. Direct comparisons of the electron-transfer
characteristics of the oxochlorin dyads with the corresponding
porphyrin dyads were not reported.
(10) Johnson, D. G.; Niemczyk, M. P.; Minsek, D. W.; Wiederrecht, G. P.;
Svec, W.; Gaines, G. L., III; Wasielewski, M. R. J. Am. Chem. Soc. 1993,
115, 5692-5701.
(11) Wiederrecht, G. P.; Niemczyk, M. P.; Svec, W.; Wasielewski, M. R. J.
Am. Chem. Soc. 1996, 118, 81-88.
(12) Wasielewski, M. R.; Johnson, D. G.; Svec, W. A. NATO ASI Ser., Ser. C
1987, 214, 255-266.
(13) Holtzwarth, A. R.; Katterle, M.; Muller, M. G.; Ma, Y.-Z.; Prokhorenko,
V. Pure Appl. Chem. 2001, 73, 469-474.
(14) Fukuzumi, S.; Ohkubo, K.; Imahori, H.; Shao, J.; Ou, Z.; Zheng, G.; Chen,
Y.; Pandey, R. K.; Fujitsuka, M.; Ito, O.; Kadish, K. M. J. Am. Chem.
Soc. 2001, 123, 10676-10683.
(24) Holten, D.; Bocian, D. F.; Lindsey, J. S. Acc. Chem. Res. 2002, 35, 57-
69.
(15) Gust, D.; Moore, T. A.; Moore, A. L. Acc. Chem. Res. 2001, 34, 40-48.
(16) Jordens, S.; De Belder, G.; Lor, M.; Schweitzer, G.; Van der Auweraer,
M.; Herrmann, A.; Wiesler, U. M.; Mu¨llen, K.; De Schryver, F. C.
Photochem. Photobiol. Sci. 2003, 2003, 1118-1124.
(25) Redmore, N. P.; Rubtsov, I. V.; Therien, M. J. J. Am. Chem. Soc. 2003,
125, 8769-8778.
(26) Hayes, R. T.; Walsh, C. J.; Wasielewski, M. R. J. Phys. Chem. A 2004,
108, 2375-2381.
(17) Furuta, P.; Brooks, J.; Thompson, M. E.; Fre´chet, J. M. J. Am. Chem. Soc.
2003, 123, 13165-13172.
(27) Strachan, J.-P.; Gentemann, S.; Seth, J.; Kalsbeck, W. A.; Lindsey, J. S.;
Holten, D.; Bocian, D. F. J. Am. Chem. Soc. 1997, 119, 11191-11201.
(28) Osuka, A.; Tanabe, N.; Kawabata, S.; Yamazaki, I.; Nishimura, Y. J. Org.
Chem. 1995, 60, 7177-7185.
(18) Aratani, N.; Osuka, A.; Cho, H. S.; Kim, D. J. J. Photochem. Photobiol.,
C 2002, 3, 25-52.
(19) Wu¨rthner, F.; Thalacker, C.; Diele, S.; Tschierske, C. Chem. Eur. J. 2001,
7, 2245-2253.
(29) Hopfield, J. J. Proc. Natl. Acad. Sci. U.S.A. 1974, 71, 3640-3644.
(30) Jortner, J. J. Chem. Phys. 1976, 64, 4860-4867.
(31) Marcus, R. J. Chem. Phys. 1984, 81, 4494-4500.
(32) Plato, M.; Moebius, K.; Michel-Beyerle, M. E.; Bixon, M.; Jortner, J. J.
Am. Chem. Soc. 1988, 110, 7279-7285.
(20) Wagner, R. W.; Lindsey, J. S.; Seth, J.; Palaniappan, V.; Bocian, D. F. J.
Am. Chem. Soc. 1996, 118, 3996-3997.
(21) Taniguchi, M.; Kim, H.-J.; Ra, D.; Schwartz, J. K.; Kirmaier, C.; Hindin,
E.; Diers, J. R.; Prathapan, S.; Bocian, D. F.; Holten, D.; Lindsey, J. S. J.
Org. Chem. 2002, 67, 7329-7342.
(33) Tsai, H.; Simpson, M. C. Chem. Phys. Lett. 2002, 353, 111-118.
(34) Gouterman, M. Porphyrins 1978, 3, 1-165.
(35) Weiss, C.; Kobayashi, H.; Gouterman, M. J. Mol. Spectrosc. 1965, 16,
415-450.
(22) Hindin, E.; Kirmaier, C.; Diers, J. R.; Tomizaki, K.-y.; Taniguchi, M.;
Lindsey, J. S.; Bocian, D. F.; Holten, D. J. Phys. Chem. B 2004, 108, 8190-
8200.
(36) Fajer, J.; Borg, D. C.; Forman, A.; Dolphin, D.; Felton, R. H. J. Am. Chem.
Soc. 1970, 92, 3451-3459.
(23) Kirmaier, C.; Hindin, E.; Schwartz, J. K.; Sazanovich, I. V.; Diers, J. R.;
Muthukumaran, K.; Taniguchi, M.; Bocian, D. F.; Lindsey, J. S.; Holten,
D. J. Phys. Chem. B 2003, 107, 3443-3454.
(37) Atamian, M.; Wagner, R. W.; Lindsey, J. S.; Bocian, D. F. Inorg. Chem.
1988, 27, 1510-1512.
9
4780 J. AM. CHEM. SOC. VOL. 128, NO. 14, 2006