Notes and references
z Dioxyacetylation of indene similarly proceeds, and the results are
given in ESI.w
1 C. Prevost, C. R. Hebd. Seances Acad. Sci., 1933, 196, 1129.
´
2 R. B. Woodward and F. V. Brutcher, Jr, J. Am. Chem. Soc., 1958,
80, 209.
Scheme 3 Trapping with ketene silyl acetal.
3 For a review for dioxolanyl cation, see: C. U. Pittman, Jr,
S. P. McManus and J. W. Larsen, Chem. Rev., 1972, 72, 357.
4 C. V. Wilson, Org. React., 1957, 9, 332; R. C. Cambie and
P. S. Rutledge, Org. Synth., 1979, 59, 169; J. Rodriguez and
J. P. Dulcere, Synthesis, 1993, 1177; A. R. Vaino and
W. A. Szarek, Adv. Carbohydr. Chem. Biochem., 2001, 56, 9.
5 Hypervalent iodine has been used in Prevost and Woodward reactions,
´
see: (a) V. V. Zhdankin, R. Tykwinski, B. Berglund, M. Mullikin,
R. Caple, N. S. Zefirov and A. S. Koz’min, J. Org. Chem., 1989, 54,
2609; (b) M. Ochiai, K. Miyamoto, M. Shiro, T. Ozawa and K.
Yamaguchi, J. Am. Chem. Soc., 2003, 125, 13006; (c) L. Emmanuvel,
T. M. A. Shaikh and A. Sudalai, Org. Lett., 2005, 7, 5071; (d) Y. Li, D.
Song and V. M. Dong, J. Am. Chem. Soc., 2008, 130, 2962; (e) J.
Seayad, A. M. Seayad and C. L. L. Chai, Org. Lett., 2010, 12, 1412.
Scheme 4 Trapping with trimethylsilyl bromide.
took place. These may be major reasons for the decrease in the ee
value under conditions B rather than that under conditions A.
The intermediate formation of the dioxolanyl cation was
confirmed by trapping reaction with ketene silyl acetal (KSA)
as shown in Scheme 3.z The reaction was started in the absence
of KSA, and the nucleophile was added into the reaction
mixture at ꢀ40 1C. The trapping product 7 was obtained as a
single diastereomer. The structure was determined by nOe
observed in 1H NMR spectroscopy, and the diastereo-
selectivity must be attributed to the steric fence due to the
indane moiety during the addition of KSA toward the 1,3-
dioxolan-2-yl cation. The 1,3-dioxolanyl framework remains
in the trapping product 7 without its ring-opening. This is
most convincing evidence for intermediate formation of the
1,3-dioxolan-2-yl cation.
6 Diastereoselective Prevost and Woodward reactions of chiral alkene
´
substrates have been reported, see: (a) J. H. Kim, M. J. C. Long,
J. Y. Kim and K. H. Park, Org. Lett., 2004, 6, 2273; (b) J. H. Kim,
M. J. Curtis-Long, W. D. Seo, Y. B. Ryu, M. S. Yang and K. H. Park,
J. Org. Chem., 2005, 70, 4082; (c) A. D’Alfonso, M. Pasi, A. Porta,
G. Zanoni and G. Vidari, Org. Lett., 2010, 12, 596.
7 For recent examples, see: J.-L. Giner, W. V. Ferris, Jr and
J. J. Mullins, J. Org. Chem., 2002, 67, 4856; T. Zheng,
R. S. Narayan, J. M. Schomaker and B. Borhan, J. Am. Chem.
Soc., 2005, 127, 6946; J.-H. Kim, H. Yang and G.-J. Boons,
Angew. Chem., Int. Ed., 2005, 44, 947; J.-H. Kim, H. Yang,
J. Park and G.-J. Boons, J. Am. Chem. Soc., 2005, 127, 12090;
Z. Pei, H. Dong and O. Ramstrom, J. Org. Chem., 2005, 70, 6952;
¨
M. A. L. Podeschwa, O. Plettenburg and H.-J. Altenbach, Eur. J.
Org. Chem., 2005, 3116; N. Veerapen, S. A. Taylor, C. J. Walsby
and B. M. Pinto, J. Am. Chem. Soc., 2006, 128, 227; R. S. Narayan
and B. Borhan, J. Org. Chem., 2006, 71, 1416; Y. Zeng, Z. Wang,
D. Whitfield and X. Huang, J. Org. Chem., 2008, 73, 7952;
A. M. Szpilman, J. M. Manthorpe and E. M. Carreira,
Angew. Chem., Int. Ed., 2008, 47, 4339; J.-J. Shie, J.-M. Fang
and C.-H. Wong, Angew. Chem., Int. Ed., 2008, 47, 5788;
C. W. Bond, A. J. Cresswell, S. G. Davies, A. M. Fletcher,
W. Kurosawa, J. A. Lee, P. M. Roberts, A. J. Russell,
A. D. Smith and J. E. Thomson, J. Org. Chem., 2009, 74, 6735.
8 For a recent review, see: M. Ngatimin and D. W. Lupton, Aust. J.
Chem., 2010, 63, 653.
9 For enantioselective oxidation of styrene with chiral hypervalent
iodine(III), see: U. H. Hirt, B. Spingler and T. Wirth, J. Org. Chem.,
1998, 63, 7674; U. H. Hirt, M. F. H. Schuster, A. N. French,
O. G. Wiest and T. Wirth, Eur. J. Org. Chem., 2001, 1569.
10 For recent examples, see: (a) U. Ladziata, J. Carlson and V. V.
Zhdankin, Tetrahedron Lett., 2006, 47, 6301; (b) R. D. Richardson,
T. K. Page, S. Altermann, S. M. Paradine, A. N. French and T.
Wirth, Synlett, 2007, 538; (c) T. Dohi, A. Maruyama, N. Takenaga,
K. Senami, Y. Minamitsuji, H. Fujioka, S. B. Caemmerer and Y.
Kita, Angew. Chem., Int. Ed., 2008, 47, 3787; (d) S. M. Altermann,
R. D. Richardson, T. K. Page, R. K. Schmidt, E. Holland,
U. Mohammed, S. M. Paradine, A. N. French, C. Richter,
A. M. Bahar, B. Witulski and T. Wirth, Eur. J. Org. Chem., 2008,
5315; (e) S. Quideau, G. Lyvinec, M. Marguerit, K. Bathany,
Trimethylsilyl bromide was also employed as a nucleophile
for trapping the dioxolanyl cation (Scheme 4). The bromide
was introduced at the benzyl position of the trapping product
8, which has (1R,2S) configuration. The regio and diastereo-
selectivities are consistent with the anti selectivity observed in
the reaction giving the diacetate product 2 (Table 2). The ee
value of the bromide 8 is similar to that of the acetate anti-2a
(entries 1 and 2 in Table 2). These results agree well with the
reaction pathway involving the optically active dioxolanyl
cation, which was trapped by a nucleophile at the benzylic
position through the SN2 mechanism.
Nucleophilic attack of acetate and bromide takes place at the
4-position of the dioxolanyl cation, and addition of water and
KSA takes place at the 2-position. Regioselectivity of the nucleo-
philic attack may be thermodynamically controlled. Nucleophilic
addition at the 2-position of the dioxolanyl cation may be
kinetically favorable, but addition of acetate and bromide at the
2-position may be reversible. In contrast, addition of H2O and
ketene silyl acetal at the 2-position must be irreversible.
In summary, we demonstrate convenient preparation of an
optically active 1,3-dioxolan-2-yl cation, which serves for
regio- and stereoselective trapping of several kinds of nucleo-
phile. The selectivity depends on the nature of nucleophile,
and contributes to the switchover of stereochemical course of
the reaction.
A. Ozanne-Beaudenon, T. Buffeteau, D. Cavagnat and A. Chenede,
´ ´
Angew. Chem., Int. Ed., 2009, 48, 4605; (f) J. K. Boppisetti and
V. B. Birman, Org. Lett., 2009, 11, 1221; (g) U. Farooq, S. Schafer,
A. A. Shah, D. M. Freudendahl and T. Wirth, Synthesis, 2010, 1023;
(h) M. Uyanik, T. Yasui and K. Ishihara, Angew. Chem., Int. Ed.,
2010, 49, 2175; (i) M. Uyanik, T. Yasui and K. Ishihara, Tetrahedron,
2010, 66, 5841; (j) M. Uyanik, H. Okamoto, T. Yasui and
K. Ishihara, Science, 2010, 328, 1376.
11 (a) M. Fujita, Y. Yoshida, K. Miyata, A. Wakisaka and
T. Sugimura, Angew. Chem., Int. Ed., 2010, 49, 7068;
(b) M. Fujita, Y. Ookubo and T. Sugimura, Tetrahedron Lett.,
2009, 50, 1298; (c) M. Fujita, S. Okuno, H. J. Lee, T. Sugimura and
T. Okuyama, Tetrahedron Lett., 2007, 48, 8691.
We are very grateful to Dr H. Akutsu and Prof. S. Nakatsuji
(Hyogo) for X-ray crystallographic analyses and to Prof.
T. Okuyama (Hyogo) for reading this manuscript.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 3983–3985 3985