3 (a) J. E. Baldwin and A. P. Kostikov, J. Org. Chem., 2010, 75,
2767–2775; (b) F. A. Khan and B. Rout, Tetrahedron Lett., 2006, 47,
5251–5253; (c) S. Ikeda, M. Shibuya and Y. Iwabuchi, Chem. Commun.,
2007, 504–506; (d) W. J. Koot and S. V. Ley, Tetrahedron, 1995, 51,
2077–2090; (e) K. G. Liu, A. Chougnet and W. D. Woggon, Angew.
Chem., Int. Ed., 2008, 47, 5827–5829; (f) G. S. Weatherhead,
G. A. Cortez, R. R. Schrock and A. H. Hoveyda, Proc. Natl. Acad.
Sci. U. S. A., 2004, 101, 5805–5809; (g) K. G. Liu and W. D. Woggon,
Eur. J. Org. Chem., 2010, 1033–1036.
4 (a) K. I. Ladwein and M. Jung, Angew. Chem., Int. Ed., 2011, 50,
12143–12145; (b) M. Munzel, D. Globisch and T. Carell, Angew. Chem.,
Int. Ed., 2011, 50, 6460–6468; (c) T. Pfaffeneder, B. Hackner, M. Truss,
M. Munzel, M. Muller, C. A. Deiml, C. Hagemeier and T. Carell,
Angew. Chem., Int. Ed., 2011, 50, 7008–7012; (d) M. Munzel,
D. Globisch, C. Trindler and T. Carell, Org. Lett., 2010, 12, 5671–5673.
5 (a) K. M. Gligorich and M. S. Sigman, Angew. Chem., Int. Ed.,
2006, 45, 6612–6615; (b) M. S. Sigman and D. R. Jensen, Acc.
Chem. Res., 2006, 39, 221–229; (c) B. A. Steinhoff, S. R. Fix and
S. S. Stahl, J. Am. Chem. Soc., 2002, 124, 766–767; (d) M. J.
Schultz, C. C. Park and M. S. Sigman, Chem. Commun., 2002,
3034–3035; (e) B. A. Steinhoff and S. S. Stahl, Org. Lett., 2002, 4,
4179–4181; (f) M. J. Schultz, S. S. Hamilton, D. R. Jensen and
M. S. Sigman, J. Org. Chem., 2005, 70, 3343–3352; (g) M. Hayashi,
K. Yamada and S. Nakayama, J. Chem. Soc., Perkin Trans. 1,
2000, 1501–1503; (h) F. Batt, C. Gozzi and F. Fache, Chem.
Commun., 2008, 5830–5832; (i) T. Nishimura, N. Kakiuchi,
M. Inoue and S. Uemura, Chem. Commun., 2000, 1245–1246.
6 (a) T. Iwai, T. Fujihara and Y. Tsuji, Chem. Commun., 2008, 6215–6217;
(b) T. C. Fessard, S. P. Andrews, H. Motoyoshi and E. M. Carreira,
Angew. Chem., Int. Ed., 2007, 46, 9331–9334; (c) B. Morandi and
E. M. Carreira, Synlett, 2009, 2076–2078; (d) M. Kreis, A. Palmelund,
L. Bunch and R. Madsen, Adv. Synth. Catal., 2006, 348, 2148–2154.
7 (a) A. Modak, A. Deb, T. Patra, S. Rana, S. Maity and D. Maiti,
Chem. Commun., 2012, 48, 4253–4255; (b) Akanksha and D. Maiti,
Green Chem., 2012, 14, 2314–2320.
Scheme 3 Proposed catalytic cycles.
Scheme 4 Proposed pathways5 for generation of R–CH3.
Scheme 5 Large scale reaction.
the reaction conditions, 1-naphthalene–CD2H was detected by
GC-MS (B5%).13 These observations helped us to suggest a
mechanism for the generation of minor products under the present
conditions (Scheme 4).5 Note that in the absence of any exogenous
ligand, substrates under study such as R–CH2OH or R–CHO,
which are generated during the course of the reaction, may act as
the ligand for palladium.9
8 (a) Just recently, a Rh-catalyzed photocatalytic alcohol decarbonylation
has been developed H.-A. Ho, K. Manna and A. D. Sadow, Angew.
Chem., Int. Ed., 2012, 51, 8607–8610. Our Pd-catalyzed method is found
to be complementary to this report. The Rh-catalyzed method is
efficient with aliphatic substrates, whereas a much better substrate scope
of aromatic and heteroaromatic moieties is obtained with Pd(OAc)2;
(b) The Rh-catalyzed method8a failed completely (yield, 0%) with
substituted benzyl alcohol (4-X–C6H4CH2OH; X = NO2, CO2Me,
etc.), whereas our method produces acceptable yields of the expected
product (Table 1, entries 7, 8, etc.).
Additionally, the reaction proved to be scalable, with
2-naphthalenemethanol on a gram scale, delivering 70% of the
desired product (Scheme 5). Aside from the wide substrate scope
and functional group tolerance, it is worth noting that this method
works under air and without any need for solvent purification.
We are presently studying the detailed mechanism of this reac-
tion and also working on increasing the turnover number of the
catalyst. Nevertheless, the results of this work have demonstrated
that the selective cleavage of the –CH2OH group can be conducted
by simply using widely available Pd(OAc)2.16 The scope of the
reaction is broad, allowing the dehydroxymethylation of aryl
substrates, as well as the extension of this protocol to hetero-
aromatic and aliphatic moieties. The present study also offers a
new synthetic strategy for the regioselective functionalization by
employing the steric, electronic and coordinating nature of the
–CH2OH group temporarily. This advance clearly impacts one of
the limitations of the existing practice of dehydroxymethylation,
which usually required two separate catalytic systems.
9 Metal-Catalyzed Cross-Coupling Reactions, ed. A. de Meijere and
F. Diederich, Wiley-VCH, Weinheim, Germany, 2nd edn, 2004.
10 M. Tobisu, R. Nakamura, Y. Kita and N. Chatani, J. Am. Chem.
Soc., 2009, 131, 3174–3175.
11 (a) P. Alvarez-Bercedo and R. Martin, J. Am. Chem. Soc., 2010, 132,
17352–17353; (b) A. G. Sergeev and J. F. Hartwig, Science, 2011, 332,
439–443; (c) M. Tobisu, K. Yamakawa, T. Shimasaki and N. Chatani,
Chem. Commun., 2011, 47, 2946–2948; (d) T. Mesganaw, N. F. Fine
Nathel and N. K. Garg, Org. Lett., 2012, 14, 2918–2921;
(e) N. Barbero and R. Martin, Org. Lett., 2012, 14, 796–799.
12 B. A. Ellsworth, W. Meng, M. Patel, R. N. Girotra, G. Wu,
P. M. Sher, D. L. Hagan, M. T. Obermeier, W. G. Humphreys,
J. G. Robertson, A. Y. Wang, S. P. Han, T. L. Waldron,
N. N. Morgan, J. M. Whaley and W. N. Washburn, Bioorg.
Med. Chem. Lett., 2008, 18, 4770–4773.
13 See ESIw.
14 F. A. Hochstein and W. G. Brown, J. Am. Chem. Soc., 1948, 70,
3484–3486.
This work is supported by DST (R/S1/IC–24/2011) and
CSIR (P81102); India. Financial support received from CSIR-
India (fellowship to A.M. and T.N.) is gratefully acknowledged.
Palladium catalysts were obtained as a gift from Johnson
Matthey Chemicals, MIDC Taloja, India.
15 Note that mechanistically Rh-catalyzed methods are different
compared to the Pd-catalyzed process discussed here8.
(a) D. Morton and D. J. Colehamilton, J. Chem. Soc., Chem.
Commun., 1987, 248–249; (b) D. Morton, D. J. Colehamilton,
I. D. Utuk, M. Panequesosa and M. Lopezpoveda, J. Chem.
Soc., Dalton Trans., 1989, 489–495; (c) E. Delgadolieta,
M. A. Luke, R. F. Jones and D. J. Colehamilton, Polyhedron,
1982, 1, 839–840; (d) J. H. Park, Y. Cho and Y. K. Chung, Angew.
Chem., Int. Ed., 2010, 49, 5138–5141.
Notes and references
1 (a) E. M. Simmons and J. F. Hartwig, J. Am. Chem. Soc., 2010,
132, 17092–17095; (b) K. M. Engle, T. S. Mei, M. Wasa and
J. Q. Yu, Acc. Chem. Res., 2012, 45, 788–802.
2 A. H. Hoveyda, D. A. Evans and G. C. Fu, Chem. Rev., 1993, 93,
1307–1370.
16 A patent on this work has been filed, Indian Patent Application
No: 3280/MUM/2011.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun.